Dérivation

Réponses à toutes vos questions de la 2nde à la Terminale toutes séries
Coldplay73
Membre Naturel
Messages: 13
Enregistré le: 31 Oct 2008, 12:28

Dérivation

par Coldplay73 » 31 Oct 2008, 13:24

Bonjour tout le monde,
Voila j'ai commencé a faire mes devoirs aujourd'hui :happy2: et au 1er exercice que je commence j'ai déjà un problème :triste: .
Pour info, je suis en 1ereS et j'ai vraiment du mal en maths :triste: .

Donc dans mon exercice il faut démontrer une conjecture.

J'ai 2 courbes dans un repère (O;i;j) :
Cf qui représente la fonction f(x)=
Cg qui représente la fonction g(x)=

Il faut démontrer qu'à l'origine du repère les tangentes les tangentes a ces 2 courbes sont confondues c'est a dire que les courbes possèdent une même tangente en O(0;0)

Je me suis dis qu'il faut trouver l'équation des 2 tangente et si c'est les même la démonstration sera correcte.

J'ai cherché l'équation de la tangente a Cf en O(0;0) et j'ai trouver :
y1= ( après vérification avec la calculatrice cela me semble correct )

Le problème arrive en cherchant la tangente a Cg :
y2=g'(0)[0-0+g(0)]

g(0)=0

Calcul de g'(0) :

Soit p(x)= ; k(x)=x² ; j(x)=

G'(x)= (pk)'(x) + j'(x) (pk)'= (p'*k)+(p*k') avec p'= et k'=2x

Je trouve (pk)'= 1 et donc g'(x)= (pk)'(x)+j'(x) 1+j'(x)
j'(x)= car j(x)=
Ce qui donne g'(x)=1+ =

Donc y2= [x-0-0]=

Je n'ai donc pas les meme equation, c'est le probleme :hum:
Voilou si quelqu'un voit où est mon erreur ou mes erreurs ^^ ...

Merci d'avance !

Pfiou c'est dur d'utiliser [tex] :doh:



XENSECP
Habitué(e)
Messages: 6387
Enregistré le: 27 Fév 2008, 19:13

par XENSECP » 31 Oct 2008, 13:33

Oulala c'est compliqué ton truc !
La réponse est super simple ! Je te le fais de tête en 2 lignes :

f(0)=g(0)=0
f ' (0) = 3/2 (même de tête ca se fait oui oui...)
g ' (0) = 3/2 (évident !)

La tangente aux 2 courbes en 0 est bien y(x)=3/2*x ;)

PS : pour g(x) tu as bien 1/2*x^2 + 3/2*x hein ?

Coldplay73
Membre Naturel
Messages: 13
Enregistré le: 31 Oct 2008, 12:28

par Coldplay73 » 31 Oct 2008, 13:37

XENSECP a écrit:Oulala c'est compliqué ton truc !
La réponse est super simple ! Je te le fais de tête en 2 lignes :

f(0)=g(0)=0
f ' (0) = 3/2 (même de tête ca se fait oui oui...)
g ' (0) = 3/2 (évident !)

La tangente aux 2 courbes en 0 est bien y(x)=3/2*x ;)

PS : pour g(x) tu as bien 1/2*x^2 + 3/2*x hein ?


Ok je me suis casser la tete pour rien lol .
Par contre peut tu me dire comment tu trouve g'(0)=3/2 ?

XENSECP
Habitué(e)
Messages: 6387
Enregistré le: 27 Fév 2008, 19:13

par XENSECP » 31 Oct 2008, 13:38

écris bien (sans LATEX) la formule de g (x)... car j'ai l'impression que tu t'es gourré dans le recopiage :)

Coldplay73
Membre Naturel
Messages: 13
Enregistré le: 31 Oct 2008, 12:28

par Coldplay73 » 31 Oct 2008, 13:42

XENSECP a écrit:écris bien (sans LATEX) la formule de g (x)... car j'ai l'impression que tu t'es gourré dans le recopiage :)


g(x)=(1/2)x²+(3/2)x c'est ça ...

XENSECP
Habitué(e)
Messages: 6387
Enregistré le: 27 Fév 2008, 19:13

par XENSECP » 31 Oct 2008, 13:44

c'est bien ce qu'il me semblait ! ba si tu sais calculer la dérivée de f en 0, celle de g est nettement plus trivial (trinome !)

Coldplay73
Membre Naturel
Messages: 13
Enregistré le: 31 Oct 2008, 12:28

par Coldplay73 » 31 Oct 2008, 13:49

XENSECP a écrit:c'est bien ce qu'il me semblait ! ba si tu sais calculer la dérivée de f en 0, celle de g est nettement plus trivial (trinome !)



Ayé j'ai vu où est ce que je m'etais trompé :girl2: je suis trop stupide !
Donc je trouve bien g'(o)=3/2
donc y2=(3/2) x

Merci !

XENSECP
Habitué(e)
Messages: 6387
Enregistré le: 27 Fév 2008, 19:13

par XENSECP » 31 Oct 2008, 13:51

you're welcome :)

Antho07
Membre Rationnel
Messages: 741
Enregistré le: 26 Oct 2007, 19:12

par Antho07 » 31 Oct 2008, 13:51

XENSECP a écrit:Oulala c'est compliqué ton truc !
La réponse est super simple ! Je te le fais de tête en 2 lignes :

f(0)=g(0)=0
f ' (0) = 3/2 (même de tête ca se fait oui oui...)
g ' (0) = 3/2 (évident !)

La tangente aux 2 courbes en 0 est bien y(x)=3/2*x ;)

PS : pour g(x) tu as bien 1/2*x^2 + 3/2*x hein ?


Ton post n'est pas très en accord avec ta signature....

Bref , balancé la reponse avec en plus un coté méprisant en disant c'est évident (qu'est ce que l'évidence en maths?....)


D'autant plus que tu n'aide pas vraiment à trouver l'erreur.

Deja plusieur erreur que j'ai relevé:

L'equation de la tangente à une courbe représentative d'une fonction g au point a est:


(le g(a) n'est pas dans la prenthese avec le x et le a).


En revanche il doit y avoir une erreur sur l'une des deux fonctions,les tangentes n'etant pas les mêmes à l'origine avec ces deux là

XENSECP
Habitué(e)
Messages: 6387
Enregistré le: 27 Fév 2008, 19:13

par XENSECP » 31 Oct 2008, 13:53

c'est ce que je lui faisais remarquer (l'erreur dans son 1er post)
De plus il avait trouvé la première réponse (durement mais surement) donc voilà, la deuxième était évidente et il l'aurait trouvé tout seul s'il s'était pas planté dans son énoncé recopié ^^

je sais évaluer les profiteurs et les taffeurs... d'où la "contradiction" avec ma signature qui date un peu d'ailleurs et que personne ne lit :)

Antho07
Membre Rationnel
Messages: 741
Enregistré le: 26 Oct 2007, 19:12

par Antho07 » 31 Oct 2008, 13:58

XENSECP a écrit:c'est ce que je lui faisais remarquer (l'erreur dans son 1er post)
De plus il avait trouvé la première réponse (durement mais surement) donc voilà, la deuxième était évidente et il l'aurait trouvé tout seul s'il s'était pas planté dans son énoncé recopié ^^

je sais évaluer les profiteurs et les taffeurs... d'où la "contradiction" avec ma signature qui date un peu d'ailleurs et que personne ne lit :)


Ok fait tout de même attention en utilisant des mots comme évident, de tête qui peuvent etre mal ressentit par des gens qui ,je suis d'accord avec toi montre dans ce cas un véritable effort de recherche sur le problème et qui mérite donc l'aide de ce forum.

Coldplay73
Membre Naturel
Messages: 13
Enregistré le: 31 Oct 2008, 12:28

par Coldplay73 » 31 Oct 2008, 13:59

Antho07 merci de m'avoir fais remarquer que je m'étais trompée ( et oui je suis une fille XENSECP ^^ ) dans ma formule y=f'(a)[x-a)+f(a) car c'était une erreur de recopiage de cours :hum:

En fait mon erreur etait simplement une erreur d'inattention car je n'ai pas écrit correctement l'equation de g .
Merci de votre aide a la prochaine fois ^^ qui je pense va bientôt arriver car il me reste 9 exo ^^ !

Antho07
Membre Rationnel
Messages: 741
Enregistré le: 26 Oct 2007, 19:12

par Antho07 » 31 Oct 2008, 14:01

Coldplay73 a écrit:Antho07 merci de m'avoir fais remarquer que je m'étais trompée ( et oui je suis une fille XENSECP ^^ ) dans ma formule y=f'(a)[x-a)+f(a) car c'était une erreur de recopiage de cours :hum:

En fait mon erreur etait simplement une erreur d'inattention car je n'ai pas écrit correctement l'equation de g .
Merci de votre aide a la prochaine fois ^^ qui je pense va bientôt arriver car il me reste 9 exo ^^ !


Bon courage alors

 

Retourner vers ✎✎ Lycée

Qui est en ligne

Utilisateurs parcourant ce forum : Aucun utilisateur enregistré et 67 invités

Tu pars déja ?



Fais toi aider gratuitement sur Maths-forum !

Créé un compte en 1 minute et pose ta question dans le forum ;-)
Inscription gratuite

Identification

Pas encore inscrit ?

Ou identifiez-vous :

Inscription gratuite