19 résultats trouvés

Revenir à la recherche avancée


la base f1 f2 f3 n'est pas ORTHOGONALE !
par sOft007
11 Jan 2009, 22:31
 
Forum: ✯✎ Supérieur
Sujet: Quadrique
Réponses: 10
Vues: 1267

c'est bon j'ai trouvé merci comme mm
par sOft007
11 Jan 2009, 16:39
 
Forum: ✯✎ Supérieur
Sujet: Décomposition en carré linéairement indépendant
Réponses: 1
Vues: 879

Décomposition en carré linéairement indépendant

bonjour
j'aimerai bien décomposé la forme quadratique en carré linéairement indépendant avec GAUSS
2xy + 4 xz + 2zy

= x(2y + 4z) + 2zy

si j'utilise la formule ab = 1/4 ((a+b)² - (a-b)²)
sa va me donné 4 carré alors qu'on est en dimension3...
comment faire ??
par sOft007
11 Jan 2009, 16:11
 
Forum: ✯✎ Supérieur
Sujet: Décomposition en carré linéairement indépendant
Réponses: 1
Vues: 879

Forme Quadratique

Re bonjour Avec la méthode de gauss Par exemple q(x,y,z)= xz + 2yy² + 2z² + 2xy - 4xz - 6yz je trouve comme décomposition (x+y-2z)² + (y-z)² - 3(z²) donc ma nouvelle base c'est X,Y,Z avec X= x+y+2z Y = y-z Z= z si je fait x= xe1 + ye2 + ze3 = Xa1 + Ya2+Za3 = a1(x+y-2z) + a2( y-z) + a3 (z) = x (a1) +...
par sOft007
11 Jan 2009, 16:07
 
Forum: ✯✎ Supérieur
Sujet: Forme Quadratique
Réponses: 3
Vues: 580

mais c'est pas orthogonal sa ??
par sOft007
11 Jan 2009, 15:42
 
Forum: ✯✎ Supérieur
Sujet: Quadrique
Réponses: 10
Vues: 1267

fin a1 =e1
a2 = e2-a1
a3=e3-e1-e2
par sOft007
11 Jan 2009, 15:42
 
Forum: ✯✎ Supérieur
Sujet: Quadrique
Réponses: 10
Vues: 1267

si je fait x= xe1 + ye2 + ze3 = Xa1 + Ya2+Za3
= a1(x+y-2z) + a2( y-z) + a3 (z)
= x (a1) + y(a1 + a2) + z (-2a1 -a2 +a3)

je dis alors que
e1 = a1
e2= a1+a2
e3 = -2a1 -a2 +a3

donc a1 = e1
a2 = e2-a1
a3=...

a1 a2 a3 ma nouvelle base ??
par sOft007
11 Jan 2009, 15:40
 
Forum: ✯✎ Supérieur
Sujet: Quadrique
Réponses: 10
Vues: 1267

mais mais comment je la trouve ma base alors ????

:cry: :cry: :cry:
je désespère...
par sOft007
11 Jan 2009, 15:37
 
Forum: ✯✎ Supérieur
Sujet: Quadrique
Réponses: 10
Vues: 1267

Quadrique

Re bonjour
Avec la méthode de gauss
Par exemple
q(x,y,z)= xz + 2yy² + 2z² + 2xy - 4xz - 6yz
je trouve comme décomposition

(x+y-2z)² + (y-z)² - 3(z²)
donc ma nouvelle base c'est X,Y,Z
avec X= x+y+2z
Y = y-z
Z= z

mais c'est pas une base ortogonale ça ?
par sOft007
11 Jan 2009, 15:31
 
Forum: ✯✎ Supérieur
Sujet: Quadrique
Réponses: 10
Vues: 1267

en faite notre prof aime bien qu'on maitrises les deux méthode pour décomposer en carrés linéairement indépendant donc Q(x,y,z) = 2 xy + 4 xz +2zy 1) méthode de Gauss on utilise la formule ab= 1/4((a+b)²-(a-b)²) 2) la deuxième méthode qui utilise la diagonalisation !! matrice dans la base canonique ...
par sOft007
11 Jan 2009, 14:37
 
Forum: ✯✎ Supérieur
Sujet: Je n'ai rien compris sur les quadratique
Réponses: 7
Vues: 741

Je n'ai rien compris sur les quadratique

Bonjour à tous Voilà je voulé vous demander quelque chose sur les forme quadratique par exemple q1= 2xy + 4 xz + 2zy Si il nous demande: 1) trouver une base orthogonale il faut faire la méthode de GAUSS ? 2) trouver une base orthonormale il fait faire la méthode des matrice non ?? Répondez moi SVP !!
par sOft007
11 Jan 2009, 13:52
 
Forum: ✯✎ Supérieur
Sujet: Je n'ai rien compris sur les quadratique
Réponses: 7
Vues: 741

Tracé d'une quadrique

Re bonjour à tous !
Quand on trace une quadrique, par exemple une hyperboiloïde à 1 nappe : le centre de symétrie sert à quoi ?

Merci de votre réponse
par sOft007
10 Jan 2009, 21:11
 
Forum: ✯✎ Supérieur
Sujet: Tracé d'une quadrique
Réponses: 0
Vues: 523

Non mais justement !!
Le prof nous a apris la décomposition de GAUSS mais cela nous donne une base orthogonale.
Il veut qu'on fasse la 2eme méthode qui nous donne une base orthonormale...
mais j'avoue j'ai pas saisit la 2ème méthode....
par sOft007
10 Jan 2009, 21:10
 
Forum: ✯✎ Supérieur
Sujet: Quadrique
Réponses: 2
Vues: 615

Quadrique

Bonjour à tous, Je dois faire l'exercice suivant : Déterminer une base orthonormale sur R3 B' à l'aide de l'endormorphisme ui ayant la même matrice que q1 sur la base B. B étant la base canonique (e1,e2,e3) de R3. q1= 2xy + 4xz + 2zy Donc j'ai écris la matrice sur la base B 0 1 2 1 0 1 2 1 0 j'ai di...
par sOft007
10 Jan 2009, 20:31
 
Forum: ✯✎ Supérieur
Sujet: Quadrique
Réponses: 2
Vues: 615

oui mais si je remplace je ne vais pas trouvé w1 w2...
par sOft007
26 Fév 2008, 22:19
 
Forum: ✯✎ Supérieur
Sujet: Encore et toujours du DL
Réponses: 6
Vues: 739

donc je remplace x par g(x)
et après je remplace g(x) par le DL de g
donc je trouve les coef ?
par sOft007
26 Fév 2008, 19:12
 
Forum: ✯✎ Supérieur
Sujet: Encore et toujours du DL
Réponses: 6
Vues: 739

j'avoue j'ai toujours pas compris...
par sOft007
26 Fév 2008, 18:31
 
Forum: ✯✎ Supérieur
Sujet: Encore et toujours du DL
Réponses: 6
Vues: 739

Encore et toujours du DL

Soit la fonction : f(x) = x / (exp(x) - 1) Soit la fonction g tel que g(0) = 0 g(x) = f(x) - 1 1) Il faut montrer que g est monotome Bon c'est c fait 2) En déduite sur g établit une bijection sur R J'ai trouver [+ inf; -1 ] 3) Sa c'est un plus difficile: Soit g-1 l'application réciproque de g, on su...
par sOft007
26 Fév 2008, 17:19
 
Forum: ✯✎ Supérieur
Sujet: Encore et toujours du DL
Réponses: 6
Vues: 739

Devellopement limité

Soit f(x) = x^3 / [ (x² +1) * arctan x ) ] 1) Trouver le DL2(0) On trouve f(x) = x² + o(x²) 2) Etudier les variation de f On trouve décroissant -inf à 0[ et croissante de [0 à +inf 3) Ils nous rapelle la propriété arctan x + arctan 1/x = +-pi/2 4) Enfin il nous demande que la réprésentation graphiqu...
par sOft007
26 Fév 2008, 17:15
 
Forum: ✯✎ Supérieur
Sujet: Devellopement limité
Réponses: 1
Vues: 788

Revenir à la recherche avancée

Tu pars déja ?



Fais toi aider gratuitement sur Maths-forum !

Créé un compte en 1 minute et pose ta question dans le forum ;-)
Inscription gratuite

Identification

Pas encore inscrit ?

Ou identifiez-vous :

Inscription gratuite