Arithmétique et structures algébriques

Réponses à toutes vos questions après le Bac (Fac, Prépa, etc.)
Chab
Membre Naturel
Messages: 29
Enregistré le: 07 Sep 2019, 01:00

Arithmétique et structures algébriques

par Chab » 10 Mar 2020, 18:23

Bonjour,
Je me demandais quels étaient les points communs entre l'anneau Z et l'anneau R[X] qui permettaient de définir sur ses deux anneaux une arithmétique (relation de Bezout, théorème de Gauss). Ma question serait même, quelles sont les conditions minimales sur un ensemble pour pouvoir lui définir une arithmétique.

Il est assez clair qu'il faut que ce soit à minima un anneau mais plus encore ?

Merci d'avance pour vos réponses ? (Et si vous avez des petites références (sites, livres...) sur la question je prend)



GaBuZoMeu
Habitué(e)
Messages: 6141
Enregistré le: 05 Mai 2019, 09:07

Re: Arithmétique et structures algébriques

par GaBuZoMeu » 10 Mar 2020, 18:24

Mot-clé : anneau euclidien.

Chab
Membre Naturel
Messages: 29
Enregistré le: 07 Sep 2019, 01:00

Re: Arithmétique et structures algébriques

par Chab » 10 Mar 2020, 18:25

Je vais aller zieuter de ce côté ci alors

GaBuZoMeu
Habitué(e)
Messages: 6141
Enregistré le: 05 Mai 2019, 09:07

Re: Arithmétique et structures algébriques

par GaBuZoMeu » 10 Mar 2020, 18:29

On a aussi des propriétés plus faibles, où on ne conserve qu'une partie des bonnes propriétés des anneaux euclidiens : anneau principal, anneau factoriel.

Idriss
Membre Relatif
Messages: 121
Enregistré le: 03 Mar 2020, 15:59

Re: Arithmétique et structures algébriques

par Idriss » 10 Mar 2020, 21:32


L.A.
Membre Irrationnel
Messages: 1709
Enregistré le: 09 Aoû 2008, 16:21

Re: Arithmétique et structures algébriques

par L.A. » 10 Mar 2020, 22:07

Anneaux de Dedekind (pour continuer la liste)

 

Retourner vers ✯✎ Supérieur

Qui est en ligne

Utilisateurs parcourant ce forum : Aucun utilisateur enregistré et 55 invités

Tu pars déja ?



Fais toi aider gratuitement sur Maths-forum !

Créé un compte en 1 minute et pose ta question dans le forum ;-)
Inscription gratuite

Identification

Pas encore inscrit ?

Ou identifiez-vous :

Inscription gratuite