par dbr » 06 Nov 2009, 08:02
Bonjour,
Voici ce que j'ai fait :
1 - Définition des coordonnées du soleil dans repère orthonormé x, y, z :
x = sin(a)sin(e)
y = cos(a)sin(e)
z = cos(e)
2 - Rotation repère x, y, z autour de y d'un angle = inclinaison du miroir (i)
Coordonnées du rayon x', y', z' avec :
x' = x sin(i) + z cos(i)
y' = y
z' = z cos(i) - x sin(i)
3 - Rotation repère x', y', z' autour de z' d'un angle alpha avec tan (alpha) = x' / y'
Coordonnées du rayon x'', y'', z'' avec :
x'' = x' sin (alpha) + y' cos (alpha)
y'' = x' cos (alpha) - y' sin (alpha)
z'' = z'
4 - Coordonnées du rayon de réflexion dans x'', y'', z''
xr'' = x'' = 0
yr'' = -y''
zr'' = z''
5 - Rotation repère x'', y'', z'' autour de z'' d'un angle (- alpha) :
Coordonnées du rayon réflexion xr', yr', zr' avec :
xr' = -xr'' sin(alpha) + yr'' cos(alpha)
yr' = xr'' cos(alpha) + yr'' sin (alpha)
zr' = zr''
4+5 -> 6
xr' = -y'' cos (alpha)
yr' = -y'' sin (alpha)
zr' = z''
7 - Rotation repère x', y', z' autour de y' d'un angle (-i)
Coordonnées du rayon réflexion xr, yr, zr avec :
xr = - xr' sin(i) + zr' cos(i)
yr = yr'
zr = xr' cos(i) + zr' sin(i)
d'où
xr = y'' cos (alpha) sin(i) + z'' cos(i)
yr = -y'' sin (alpha)
zr = -y'' cos (alpha) cos(i) + z'' sin(i)
d'où
xr = (x' cos (alpha) - y' sin (alpha)) *cos(alpha) sin(i) + z' cos(i)
yr = -(x' cos (alpha) - y' sin (alpha))*sin(alpha)
zr = -(x' cos (alpha) - y' sin (alpha))*cos(alpha) cos(i) + z' sin(i)
d'où
xr = ((x sin(i) + z cos(i))*cos (alpha) - y sin (alpha))*cos(alpha) sin(i) + (z cos(i) - x sin(i))*cos(i)
yr = -((x sin(i) + z cos(i))*cos (alpha) - y sin (alpha))*sin(alpha)
zr = -((x sin(i) + z cos(i))*cos (alpha) - y sin (alpha))*cos(alpha) cos(i) + (z cos(i) - x sin(i))*sin(i)
doù
xr = ((sin(a)sin(e)sin(i) + cos(e)cos(i))*cos (alpha) - cos(a)sin(e)sin (alpha))*cos(alpha) sin(i) + (cos(e)cos(i) - sin(a)sin(e)sin(i))*cos(i)
yr = -(( sin(a)sin(e)sin(i) + cos(e)cos(i))*cos (alpha) - cos(a)sin(e)sin (alpha))*sin(alpha)
zr = -(( sin(a)sin(e)sin(i) + cos(e)cos(i))*cos (alpha) - cos(a)sin(e)sin (alpha))*cos(alpha) cos(i) + (cos(e)cos(i) - sin(a)sin(e)sin(i))*sin(i)
doù
tan(ar) = [ ((sin(a)sin(e)sin(i) + cos(e)cos(i))*cos (alpha) - cos(a)sin(e)sin (alpha))*cos(alpha) sin(i) + (cos(e)cos(i) - sin(a)sin(e)sin(i))*cos(i) ] / [ -(( sin(a)sin(e)sin(i) + cos(e)cos(i))*cos (alpha) - cos(a)sin(e)sin (alpha))*sin(alpha) ]
cos(er) = -(( sin(a)sin(e)sin(i) + cos(e)cos(i))*cos (alpha) - cos(a)sin(e)sin (alpha))*cos(alpha) cos(i) + (cos(e)cos(i) - sin(a)sin(e)sin(i))*sin(i)
avec
tan(alpha) = x/y = [xsin(i) + zcos(i)]/y
doù
tan(alpha) = [sin(a)sin(e)sin(i) + cos(e)cos(i)] / [cos(a)sin(e)]
Voyez-vous une erreur quelque part ?
Merci d'avance