Géométrie 3eme

Réponses à toutes vos questions du CP à la 3ème
nico59138
Membre Naturel
Messages: 29
Enregistré le: 28 Oct 2008, 17:43

géométrie 3eme

par nico59138 » 28 Oct 2008, 18:54

Bonjour j'aurais besoin de votre aide pour cette exercice de géométrie dont l'énoncé est:
Dans la figure suivante,ABCD est un rectangle et les longueurs sont exprimées dans la même unité:
AB=225
AD=375
JC=240
DI=81

B--------J-------------------C





A----------------------------D



(Information supplémentaire dans le shémas mais je ne sais pas comment representer):
I est sur CD
AJI forme un triangle
BD est une diagonale

1)Les droites (IJ) et (BC) sont-elles parallèles ?
2)Calculer la longueur IJ
3)Quelle est la nature du triangle AJI ?


Pour calculer JI j'ai utiliser Pythagore dans le triangle JCI(apré avoir déduis les longueurs de CI et J):
CI=BA-ID=225-81=144
BJ=AD-JC=375-240=135
Et j'ai trouver JI=(a peu prés)280

Pour les deux autres questions :hein: je ne sais pas comment faire

Merci de votre aide



oscar
Membre Légendaire
Messages: 10024
Enregistré le: 17 Fév 2007, 20:58

par oscar » 28 Oct 2008, 19:37

Bonsoir

IJ² = AB& + BJ² JI² = CD² + JC²

JC = 375- 240 -81=54

JI = 375-81 =
AJI est-il rectangle?? cacule

nico59138
Membre Naturel
Messages: 29
Enregistré le: 28 Oct 2008, 17:43

par nico59138 » 28 Oct 2008, 19:41

bonsoir oscar,je pense que tu a fait une erreur car JC=240
Et pourrais tu developper s'il te plait

oscar
Membre Légendaire
Messages: 10024
Enregistré le: 17 Fév 2007, 20:58

par oscar » 28 Oct 2008, 20:19

Efffectivement :Quand on trace AJ et JI on détermine AI= 375-81
J' ai confondu JM etJC.........
Par I on trace une perpendiculaire à AD qui coupe AC en un point lm
tel que JM = 375-240-81= 54
On a ainsi le triangle IMJ de côtés JM et MI= CD= AB= 225-

nico59138
Membre Naturel
Messages: 29
Enregistré le: 28 Oct 2008, 17:43

par nico59138 » 28 Oct 2008, 20:29

je comprend pas :hein:

oscar
Membre Légendaire
Messages: 10024
Enregistré le: 17 Fév 2007, 20:58

par oscar » 28 Oct 2008, 22:28

JA² = BA²+ BJ² = 225² + 240² ( triangle. rectangle)
AI = 375-81= 294
JI² = JM² + MI² = 54² + 225² Calcule ces sommes : AJI recxtangle en A??

B______________J_________________ C






......................................................i

A_________________________________D

Tu traces AB;IA; JI: MI; FD................................O.K.??

nico59138
Membre Naturel
Messages: 29
Enregistré le: 28 Oct 2008, 17:43

par nico59138 » 28 Oct 2008, 22:49

Ah ok :we: et les calcules servent a savoir si le triangle est isocèle ou équilatéral c sa ???
Et pour les droites parallèles je fais comment ??

nico59138
Membre Naturel
Messages: 29
Enregistré le: 28 Oct 2008, 17:43

par nico59138 » 28 Oct 2008, 23:11

Au faites,je viens de remarquer ton schéma est faut car le point I est sur (CD) et pa sur (AD)

yvelines78
Membre Légendaire
Messages: 6903
Enregistré le: 15 Fév 2006, 21:14

par yvelines78 » 29 Oct 2008, 09:59

bonjour,

1)utilise la réciproque de Thalès pour prouver ou on que les droites (IJ) et (BC) sont //s
comparaison de 2 rapports

2) les droites ne sont pas //s, utilise pythagore dans JCD

3) utilise pythagore dans les triangles rect BJA et AID pour calculer AJ² et AI²
comment te semble le triangle AIJ?
il semble rect, prouve-le avec la réciproque de Pythagore en comparant :
AI² et AJ²+IJ²

nico59138
Membre Naturel
Messages: 29
Enregistré le: 28 Oct 2008, 17:43

par nico59138 » 29 Oct 2008, 10:42

Bonjour Yvelines

Pour la réciproque de Thalés j'y avais penser mais je ne trouve pas quel triangle utiliser car aucun a 3 points alingés d'un coté et de l'autre

Pour celle de Pythagore je ne pense pas l'avoir vue

nico59138
Membre Naturel
Messages: 29
Enregistré le: 28 Oct 2008, 17:43

par nico59138 » 29 Oct 2008, 11:46

Besoin d'aide svp :cry:

oscar
Membre Légendaire
Messages: 10024
Enregistré le: 17 Fév 2007, 20:58

par oscar » 29 Oct 2008, 12:22

36bjr

triangle AIJ
IJ²= JC² + CI²=57600+20736= 78836 ( tr JCI)
AJ ² =AB²+BJ² =225² + 135²= 68850 ( tr ABJ)
AI² = AD² + DI² = 375³ +81²= 149186( tr ADI)

On a AI² = IJ² + AJ²=> AJI rectangle en J

nico59138
Membre Naturel
Messages: 29
Enregistré le: 28 Oct 2008, 17:43

par nico59138 » 29 Oct 2008, 12:29

Et pour savoir si les droites sont parallèles ???
merci pour la question 3

oscar
Membre Légendaire
Messages: 10024
Enregistré le: 17 Fév 2007, 20:58

par oscar » 29 Oct 2008, 16:55

On sait que la droite (IJ) et la droite( BC) sont concourantes en J
car J est sur (BC)
(IJ) et (BC) ne sont donc pas //

samir59620
Membre Naturel
Messages: 38
Enregistré le: 14 Oct 2008, 17:51

par samir59620 » 30 Oct 2008, 11:37

Pouvez vous plus détailler je ne comprend pas tout !?? :hein:

yvelines78
Membre Légendaire
Messages: 6903
Enregistré le: 15 Fév 2006, 21:14

par yvelines78 » 30 Oct 2008, 13:08

1)utilise la réciproque de Thalès pour prouver ou on que les droites (IJ) et (BC) sont //s
comparaison de 2 rapports

dans le triangle DBC :
CJ/BC=240/375=48/75=16/25
CI/CD=(225-81)/225=144/225=48/45=16/15

nico59138
Membre Naturel
Messages: 29
Enregistré le: 28 Oct 2008, 17:43

par nico59138 » 30 Oct 2008, 13:11

Je suis désolée je me suis tromper dans l'énoncé
La question est :
Les droites (BD) et (IJ) sont elles parallèles ?

nico59138
Membre Naturel
Messages: 29
Enregistré le: 28 Oct 2008, 17:43

par nico59138 » 30 Oct 2008, 13:27

Comment prouver qu'un triangle est rectangle sans connaitre les angles ?? (question 3)

yvelines78
Membre Légendaire
Messages: 6903
Enregistré le: 15 Fév 2006, 21:14

par yvelines78 » 30 Oct 2008, 14:26

si tu regardes plus haut, tu remarqueras que en travaillant sur le triangle BDC, j'avais anticipé cette erreur que je pensais on t'avait fait remarqué auparavant!!!

nico59138
Membre Naturel
Messages: 29
Enregistré le: 28 Oct 2008, 17:43

par nico59138 » 30 Oct 2008, 17:33

Quelqun peut-il me mettre un exemple de la réciproque de Pythagore svp

 

Retourner vers ✎ Collège et Primaire

Qui est en ligne

Utilisateurs parcourant ce forum : Aucun utilisateur enregistré et 15 invités

Tu pars déja ?



Fais toi aider gratuitement sur Maths-forum !

Créé un compte en 1 minute et pose ta question dans le forum ;-)
Inscription gratuite

Identification

Pas encore inscrit ?

Ou identifiez-vous :

Inscription gratuite