La formule de Héron
Réponses à toutes vos questions de la 2nde à la Terminale toutes séries
-
spiky26
- Membre Naturel
- Messages: 11
- Enregistré le: 15 Fév 2008, 14:47
-
par spiky26 » 16 Avr 2008, 10:45
Bonjours.
J'ai un exercice qui a pour but de démontrer la formule de Héron mais je suis bloqué
on sait que sin²(Â) = 1-((b²+c²-a²)
² / 4b²c²)
On doit en déduire que sin²(Â) = ((a+b+c)(a+b-c)(b+c-a)(c+a-b)) / 4b²c²)
Voilà si vous pouvez me mettre sur la voie pasque là vraiment je sèche ... merci :briques:
EDIT : désolé j'ai oublié un carré après 1-(b²+c²-a²)
-
emdro
- Membre Complexe
- Messages: 2351
- Enregistré le: 11 Avr 2007, 16:37
-
par emdro » 16 Avr 2008, 10:49
Bonjour,
Pars de la première expression, et mets au même dénominateur.
Pars de la seconde, et développe le numérateur.
-
Dr Neurone
- Membre Complexe
- Messages: 2875
- Enregistré le: 17 Nov 2007, 19:03
-
par Dr Neurone » 16 Avr 2008, 11:00
Bonjour Spicky26 ,
Je pense qu'il y a une erreur .
En effet au numérateur tu vas trouver en effectuant le résultat à obtenir , a, b, et c affectés d'une puissance 4 ce qui est contraire à la relation de départ.
-
spiky26
- Membre Naturel
- Messages: 11
- Enregistré le: 15 Fév 2008, 14:47
-
par spiky26 » 16 Avr 2008, 11:07
Merci pour ta réponse.
J'ai mis la 1ere au meme denominateur et ca donne (4b²c²-(b²+c²-a²)²/4b²c²).
Je peux donc simplifier et ça donne (b²+c²-a²)².
Il faut donc démontrer que (b²+c²-a²)² = la 2eme expression.
Lorsque je la développe (et elle est conséquente ^^) ça donne (après simplification) a²+b²+c²+2ab+2bc+2ac/4b²c².
On peut trouver des identitées remarquable mais je ne vois comment trouver le rapport entre la 1ere et la 2eme expression :happy2:
-
saintlouis
- Membre Rationnel
- Messages: 893
- Enregistré le: 23 Fév 2008, 19:51
-
par saintlouis » 16 Avr 2008, 11:44
Bonjour
Trangle ABC de où AB=c;BC:a et AC=b :AireABC=vp(p-a)(p-b)(p-c)
I .Methode
Poser a+b+c= 2p=> b+c-a=b+c+a-2a= 2p+2a=2(p-a)
a+c-b = 2(p-b) et a+b-c = 2(p-c)
aire S =bcsinA/ 2 et sinA = 2sinA/2 cos A/2
II)Solution
On doit calculer cos A/2 et sinA/2 par les formules de duplication
1+cos A et 1-cos A
cos A = (b²+c²-a²)/2bc
A
-
saintlouis
- Membre Rationnel
- Messages: 893
- Enregistré le: 23 Fév 2008, 19:51
-
par saintlouis » 16 Avr 2008, 17:43
Bionjour
sin² A = [4b²c² - ( b²+c²-a²)]/4b²c²
Formule a² - b² =(a-b)(a+b)(1)
sinA = [a²-(b-c)²]*((b+c)² -a²]/4b²c²
de nouveau la formule et on trouve trouve ta solution
On est loin de la formule de Héron S = V p(p-a)(p-b)(p-c)
Tu dois faire apparaiïtre les " p"
Utilisateurs parcourant ce forum : Aucun utilisateur enregistré et 77 invités