Equation de droites avec un paramètre
Réponses à toutes vos questions de la 2nde à la Terminale toutes séries
-
tyteamelie
- Messages: 5
- Enregistré le: 24 Avr 2007, 12:25
-
par tyteamelie » 24 Avr 2007, 12:33
Bonjour,
Voila l'énoncé :
Soit (0; vecteur i, vecteur j) un repère de l'ensemble des points du plan.Soit m appartient au réel . On considère les droites:
Delta : y= -3x+1 et Dm : y (m-1/2)x+2m+3/5
Question 1. Pour quelle valeur de m les droites Delta et Dm sibt- elles parallèles
Question 2. Dans le cas où Delta et Dm ne sont pas parallèles donner, en fonction de m , les coordonnées du point d'intersection noté Gm.
Question 3. Existe-t-il un point A appartenant a Dm quelle que soit la valeur de M ?
Voila est ce que vous pouvez m'aider a juste démarer les questions .
Merci d'avance
-
Monsieur23
- Habitué(e)
- Messages: 3966
- Enregistré le: 01 Oct 2006, 17:24
-
par Monsieur23 » 24 Avr 2007, 12:35
Bonjour,
Comment fais-tu pour montrer que deux droite sont parallèles ?
Ca doit être dans ton cours.
Mr.23
« Je ne suis pas un numéro, je suis un homme libre ! »
-
yvelines78
- Membre Légendaire
- Messages: 6903
- Enregistré le: 15 Fév 2006, 21:14
-
par yvelines78 » 24 Avr 2007, 12:37
bonjour,
Delta : y= -3x+1 et Dm : y =(m-1/2)x+2m+3/5
Question 1. Pour quelle valeur de m les droites Delta et Dm sibt- elles parallèles
quand des droites sont //s, elles ont même coefficient directeur (ici en rouge), donc -3=m-1/2
-
tyteamelie
- Messages: 5
- Enregistré le: 24 Avr 2007, 12:25
-
par tyteamelie » 24 Avr 2007, 12:39
Bonjour,
On utilise les théorème de Position relative de deux droites ?
-
yvelines78
- Membre Légendaire
- Messages: 6903
- Enregistré le: 15 Fév 2006, 21:14
-
par yvelines78 » 24 Avr 2007, 12:41
Question 2. Dans le cas où Delta et Dm ne sont pas parallèles donner, en fonction de m , les coordonnées du point d'intersection noté Gm.
si 2 droites sont sécantes, les coordonnées du point commun vérifie l'équation des 2 droites
GM(xM;yM)
yM= -3xM+1
yM =(m-1/2)xM+2m+3/5
donc -3xM+1 =(m-1/2)xM+2m+3/5
-
tyteamelie
- Messages: 5
- Enregistré le: 24 Avr 2007, 12:25
-
par tyteamelie » 24 Avr 2007, 12:42
Merci j'essaye
-
tyteamelie
- Messages: 5
- Enregistré le: 24 Avr 2007, 12:25
-
par tyteamelie » 24 Avr 2007, 17:16
GM(xM;yM)
yM= -3xM+1
yM =(m-1/2)xM+2m+3/5
donc -3xM+1 =(m-1/2)xM+2m+3/5
J'ai pas bien compris comment on trouve xM et yM ?
Merci
-
Monsieur23
- Habitué(e)
- Messages: 3966
- Enregistré le: 01 Oct 2006, 17:24
-
par Monsieur23 » 24 Avr 2007, 17:30
Le point d'intersection

, de coordonnées
)
est sur la droite

ET sur la droite

Donc ses coordonnées vérifient les équations des deux droites, en même temps.
x_m+2m+3/5)
Tu peux ainsi en déduire

Et ensuite, tu en déduis

grâce à l'équation de l'une des deux droites.
Mr.23
« Je ne suis pas un numéro, je suis un homme libre ! »
-
tyteamelie
- Messages: 5
- Enregistré le: 24 Avr 2007, 12:25
-
par tyteamelie » 25 Avr 2007, 12:22
Bonjour,
Pour la question deux c'est flou je ne comprend pas . Ne doit-on pas trouvé le système engendré par deux droites ?
Merci
Utilisateurs parcourant ce forum : Aucun utilisateur enregistré et 88 invités