Nombres Complexes

Réponses à toutes vos questions de la 2nde à la Terminale toutes séries
hdci
Membre Irrationnel
Messages: 1962
Enregistré le: 23 Juin 2018, 16:13

Re: Nombres Complexes

par hdci » 01 Mar 2021, 07:38

Bob1sérieux a écrit:a² = -acz² - abz ?

Oui ceci est exact.
Bob1sérieux a écrit:b² = - bcz²-ab / z?
c² = - bcz - ac / z² ?

Ceci aussi à condition peut-être de rajouter quelques parenthèses ? Mais parfaitement inutiles.

Vous devez utiliser ceci
hdci a écrit:2) Si le triangle ABC est équilatéral direct, que peut-on dire du triangle BCA ? Du triangle CAB ? Par conséquent, utiliser les résultats précédents pour faire apparaître b²=... puis c²=...


Le fait d'avoir a+bz+cz² vient uniquement du fait qu'on a énuméré le triangle en ABC. Mais si on l'avait énuméré en BCA (qui est le même triangle direct), quelle égalité aurait-on eu ? (on remplace A par B, B par C et C par A, donc... ?)
Par conséquent, a² = -acz² - abz devient quoi si on a fait cette permutation ?

(Remarque : on peut toutefois retrouver cela, en multipliant vos égalités par ce qui supprime les dénominateurs)

Bob1sérieux a écrit:je ne vois pas pourquoi exprimer des affixes au carré serait utile.

Pourquoi cette question ? On vous demande de montrer que a²+b²+c²=ab+ac+bc, il faut bien faire apparaître les carrés quelque part, non N?

Dernière remarque : la démarche ici permet de montrer que si ABC est équilatéral direct alors a²+b²+c²=ab+ac+bc. En constatant que si ABC est indirect, alors BAC est direct, on retrouvera sûrement la même égalité.
Il restera à montrer la réciproque.
Il n'y a que 10 types de personne au monde : ceux qui comprennent le binaire et ceux qui ne le comprennent pas.



Bob1sérieux
Membre Relatif
Messages: 102
Enregistré le: 05 Avr 2020, 14:24

Re: Nombres Complexes

par Bob1sérieux » 12 Mar 2021, 20:06

merci beaucoup

 

Retourner vers ✎✎ Lycée

Qui est en ligne

Utilisateurs parcourant ce forum : Aucun utilisateur enregistré et 93 invités

Tu pars déja ?



Fais toi aider gratuitement sur Maths-forum !

Créé un compte en 1 minute et pose ta question dans le forum ;-)
Inscription gratuite

Identification

Pas encore inscrit ?

Ou identifiez-vous :

Inscription gratuite