28 résultats trouvés

Revenir à la recherche avancée


Courbe vs chemin

Bonjour , c'est quoi la différence entre un chemin et une courbe ? dans mon cours un chemin c'est une application C^1 de [a,b] dans R^n ca ressemble bcp à la définition d'une courbe paramétrée ?

Merci d'avance !
par Momodu068
07 Mar 2025, 08:37
 
Forum: ✯✎ Supérieur
Sujet: Courbe vs chemin
Réponses: 1
Vues: 1555

application du sup à une équation

hello ! (désolé pour les fautes d'orthographes) j'ai une ptite question alors voila imaginons que j'ai une inéquation du genre A+B<C et je voudrais appliqué le sup c'est egale à sup(A+B)<sup(C) ou sup(A)+sup(B)<sup(C) ?? idem si j'ai AB<C si j'applique le sup à cette inéquation c'est egale à sup(AB)...
par Momodu068
13 Nov 2024, 19:30
 
Forum: ✯✎ Supérieur
Sujet: application du sup à une équation
Réponses: 1
Vues: 707

factorisation

Hello j'ai une petit question j'ai cette expression et j'aimerai la factorisé -2a^3 + 3a^2 \lambda - \lambda^3 = 0 dans la correction c'est dis que c'est egale à (a - \lambda)(\lambda^2 + a\lambda - 2a^2)=0 ou a est fixe et j'aimerai savoir c'est quoi la methode fin comment on fait p...
par Momodu068
11 Nov 2024, 19:52
 
Forum: ✯✎ Supérieur
Sujet: factorisation
Réponses: 2
Vues: 811

C^1 appication avec des matrices

Bonsoir , comment montré qu'une application matricielle est C^1 ? (dans le cas d'une fonction standard sur R^n c'est clair mais avec des matrices je ne voie pas du tout comment faire). Par exemple f : M(2,R) dans M(2,R) qui à A associé A^2 , dans cette exemple il est écrit que : L'application f est ...
par Momodu068
29 Nov 2023, 18:24
 
Forum: ✯✎ Supérieur
Sujet: C^1 appication avec des matrices
Réponses: 1
Vues: 253

Re: Diffeo locale

Merci bcp !!! c'est bcp plus clair
par Momodu068
17 Nov 2023, 20:17
 
Forum: ✯✎ Supérieur
Sujet: Diffeo locale
Réponses: 4
Vues: 225

Re: Diffeo locale

merci pour ta réponse !! mais "etre localement injective sur tout pts de l'ensemble '' sa n'implique pas globalement injective ?
par Momodu068
17 Nov 2023, 20:04
 
Forum: ✯✎ Supérieur
Sujet: Diffeo locale
Réponses: 4
Vues: 225

Diffeo locale

Bonsoir , alors voila j'ai une question qui me tracasse l'esprit. Soit f:U dans V , je ne comprend pas pourquoi dire que f est un C1-diffeomorphisme local sur U ( C1 -diffeomorphisme local en tout point de x de U ) c'est pas équivalent à dire que f est un diffeo global sur U (vu que la on dit bien q...
par Momodu068
17 Nov 2023, 19:49
 
Forum: ✯✎ Supérieur
Sujet: Diffeo locale
Réponses: 4
Vues: 225

Re: Injectivité

ok je crois que j'ai y2-y1≥ x1-x2 et x2-x1≥ y1-y2
par Momodu068
16 Nov 2023, 14:13
 
Forum: ✯✎ Supérieur
Sujet: Injectivité
Réponses: 7
Vues: 546

Re: Injectivité

effectivement je vois pourquoi , pour écire l'equations avec les inégalités je voie pas trop comment faire car dans l'inegalité c'est avc des valeurs absolues
par Momodu068
16 Nov 2023, 14:07
 
Forum: ✯✎ Supérieur
Sujet: Injectivité
Réponses: 7
Vues: 546

Re: Injectivité

Dans l'énoncé il est simplement écrit que s,t>0 comme je l'ai écris plus haut

En regroupant j'ai : e^x1-e^x2=y2-y1 et e^y1-e^y2=x2-x1
par Momodu068
16 Nov 2023, 13:58
 
Forum: ✯✎ Supérieur
Sujet: Injectivité
Réponses: 7
Vues: 546

Re: Injectivité

Merci pour t'a réponse dans l'énoncé c'etait une inégalité stricte mais c'est vrai que cela marche également pour une inégalité large.
Pour le systeme j'obtient : e^x1+y1=e^x2+y2 et e^y1+x1=e^y2+x2
En regroupant j'ai : e^x1-e^x2=y2-y1 et e^y1-e^y2=x2-x1
par Momodu068
16 Nov 2023, 13:53
 
Forum: ✯✎ Supérieur
Sujet: Injectivité
Réponses: 7
Vues: 546

Injectivité

Bonjour , j'aurais une question par rapport à l'injectivité. En effet , dans un exercice on me demande de prouver une inégalité (que j'ai réussi à prouvé) qui est : |e^s-e^t | > |(s-t) | pour tous s,t >0 puis on me dit d'en deduire que f est injective sur Ω ou Ω={ x>0,y>0} un ouvert et f : Ω dans R^...
par Momodu068
16 Nov 2023, 11:05
 
Forum: ✯✎ Supérieur
Sujet: Injectivité
Réponses: 7
Vues: 546

Re: Proba , Y=X^2

Effectivement, je n'y avais pas pensé vu que c'étais ici des lettres majuscules (X et Y) merci bcp !!!!!!!
par Momodu068
13 Nov 2023, 13:31
 
Forum: ✯✎ Supérieur
Sujet: Proba , Y=X^2
Réponses: 3
Vues: 237

Proba , Y=X^2

Bonjour j'ai une question concernant le corrigé d'un exo , voici le lien comportant l'énoncé accompagné du corrigé : https://www.math.univ-paris13.fr/~tournier/fichiers/macs1/exam_corr.pdf Mon probleme ce situe a la question 4) : "on peut remarquer que Y est à valeurs dans [0, 1] car X est à va...
par Momodu068
13 Nov 2023, 11:29
 
Forum: ✯✎ Supérieur
Sujet: Proba , Y=X^2
Réponses: 3
Vues: 237

f(P)+(levecteur)f(P)f(Q)=f(Q) ?

Hello , merci d'avance pour votre aide. Alors voila je suis en train de relire une démo de mon cours et j'aimerai savoir comme trouve-ton cette expression : On a f :qui va de A dans B une application affine ou A et B sont des espaces affines et la chose qui me gene est : soient P et Q qui appartient...
par Momodu068
09 Mar 2022, 11:44
 
Forum: ✯✎ Supérieur
Sujet: f(P)+(levecteur)f(P)f(Q)=f(Q) ?
Réponses: 2
Vues: 192

Re: Matrice dans C

okok je voie je pensais qu'il fallait obligatoirement faire intervenir le i vu qu'on est dans C , merci pour votre aide
par Momodu068
29 Aoû 2021, 10:13
 
Forum: ✯✎ Supérieur
Sujet: Matrice dans C
Réponses: 5
Vues: 333

Re: Matrice dans C

merci pour votre réponse , du coup pour la matrice identité le a=0 et le b=la matrice identité ?
par Momodu068
29 Aoû 2021, 09:53
 
Forum: ✯✎ Supérieur
Sujet: Matrice dans C
Réponses: 5
Vues: 333

Matrice dans C

Bonjour , merci d'avance pour l'aide , je suis entrain de faire quelque révision sur les matrices et les déterminants et une lacune ou question m'est apparu.

Alors me voila , est il possible d'écrire une matrice dans C ?
Par exemple , que vaut la matrice identité dans C ?
par Momodu068
29 Aoû 2021, 08:33
 
Forum: ✯✎ Supérieur
Sujet: Matrice dans C
Réponses: 5
Vues: 333

Re: Vocabulaire intégrale

d'accord , merci beaucoup de m'avoir éclaircis !
par Momodu068
21 Jan 2021, 18:02
 
Forum: ✯✎ Supérieur
Sujet: Vocabulaire intégrale
Réponses: 6
Vues: 424

Re: Vocabulaire intégrale

Merci énormément pour vos réponses. En effet comme l'a dit hdci j'ai confondu borne de l'intervalle et borne de la fonction. Mais comment différencier les deux car les deux ont le mm nom (borne inf et sup) ?
par Momodu068
21 Jan 2021, 17:57
 
Forum: ✯✎ Supérieur
Sujet: Vocabulaire intégrale
Réponses: 6
Vues: 424
Suivante

Revenir à la recherche avancée

Tu pars déja ?



Fais toi aider gratuitement sur Maths-forum !

Créé un compte en 1 minute et pose ta question dans le forum ;-)
Inscription gratuite

Identification

Pas encore inscrit ?

Ou identifiez-vous :

Inscription gratuite