Equations

Réponses à toutes vos questions après le Bac (Fac, Prépa, etc.)
Sheya
Messages: 2
Enregistré le: 03 Sep 2008, 13:57

Equations

par Sheya » 05 Sep 2008, 18:39

Salut, j'ai un peu de mal à résoudre ces deux équations:

1) m²x+1=m²-mx

2) x²+(1-3m)x+2(m-1)=0

Alors il faut ramener tout ça pour sous la forme ax²+bx+c pour calculer le discriminant, mais il faut d'abord envisager plusieurs hypothèses de m, c'est ce qui me pose problème.

Quelqu'un pourrait-il m'aider?

Merci d'avance!



Taupin sur Lyon
Membre Relatif
Messages: 233
Enregistré le: 27 Oct 2007, 18:57

par Taupin sur Lyon » 05 Sep 2008, 19:16

En effet, il faut distinguer des cas...

ce sont bien 2 équations indépendantes ? ce n'est po un système ?


Pour la 1. on peut déjà constater quelque-chose pour m=0...

Ensuite, pour la 2,faut calculer le discriminant...

Avatar de l’utilisateur
leon1789
Membre Transcendant
Messages: 5486
Enregistré le: 27 Nov 2007, 15:25

par leon1789 » 05 Sep 2008, 19:17

Sheya a écrit:Salut, j'ai un peu de mal à résoudre ces deux équations:

1) m²x+1=m²-mx

Ca , c'est une équation du type aX+b=0 : let's go !

Sheya a écrit:2) x²+(1-3m)x+2(m-1)=0

Ca, c'est une équation du second degré. Allez discriminant, let's go !

Avatar de l’utilisateur
leon1789
Membre Transcendant
Messages: 5486
Enregistré le: 27 Nov 2007, 15:25

par leon1789 » 05 Sep 2008, 19:18

Taupin sur Lyon a écrit:Pour la 1. on peut déjà constater quelque-chose pour m=0...
Ensuite, faut calculer le discriminant...

Le discriminant pour la 1/ ?!! :hum:

oscar
Membre Légendaire
Messages: 10024
Enregistré le: 17 Fév 2007, 20:58

par oscar » 05 Sep 2008, 22:04

bonsoir

Pour le 2)
Dm = (1-3m)² -8(m-1)= 9m² -14m +9 toujours >0 car 14² -481<0
Donc iy a toujours deux racines distinctes

oscar
Membre Légendaire
Messages: 10024
Enregistré le: 17 Fév 2007, 20:58

par oscar » 06 Sep 2008, 10:26

Bjr


Pour le 1

=> m²x + mx +1-m² =0 (1)
=> mx( m+1) + ( 1-m)(1+m)=0
=> ( m+1)( mx +1-m)=0

m+1=0<=> m=-1 pas de soilution pour (1)????
mx+1-m=0 <=> x =......... solution si m# 0

Avatar de l’utilisateur
leon1789
Membre Transcendant
Messages: 5486
Enregistré le: 27 Nov 2007, 15:25

par leon1789 » 06 Sep 2008, 10:43

oscar a écrit:Bjr


Pour le 1

=> m²x + mx +1-m² =0 (1)
=> mx( m+1) + ( 1-m)(1+m)=0
=> ( m+1)( mx +1-m)=0

m+1=0 m=-1 pas de soilution pour (1)????


Il vaut mieux passer d'une ligne à l'autre par équivalence car ça ne coûte rien et cela justifie qu'on ne va pas vers une équation qui contient plus de solutions que celle de l'énoncé.

Par ailleurs, dans l'équation ( m+1)( mx +1-m)=0 , si m=-1 alors l'équation est 0=0 , si bien que ... il ne faut pas dire qu'il n'y a pas de solution , bien au contraire ! tout x vérifie 0=0 !

Sheya
Messages: 2
Enregistré le: 03 Sep 2008, 13:57

par Sheya » 08 Sep 2008, 19:11

Merci pour toutes ces réponses!

A propos de la 2), je ne comprends pas pourquoi (1-3m)²-8(m-1)=9m²-14m+9

Ca ne devrait pas être égal à 9m²-8m+8? :hein:

 

Retourner vers ✯✎ Supérieur

Qui est en ligne

Utilisateurs parcourant ce forum : Aucun utilisateur enregistré et 39 invités

Tu pars déja ?



Fais toi aider gratuitement sur Maths-forum !

Créé un compte en 1 minute et pose ta question dans le forum ;-)
Inscription gratuite

Identification

Pas encore inscrit ?

Ou identifiez-vous :

Inscription gratuite