Probleme de limites !

Réponses à toutes vos questions de la 2nde à la Terminale toutes séries
Benco
Membre Naturel
Messages: 56
Enregistré le: 12 Sep 2006, 18:21

Probleme de limites !

par Benco » 12 Sep 2006, 18:28

Voila je suis en TS et j'ai un devoir maison cependant, connaisant les réponses aux limites ci-dessous, je n'arrive pas a voir comment les trouver sans ma calculette.
Merci de votre aide.

1) f(x) = racine( x + racine (x) ) - racine (x) limite en + l'infini ?

2) f(x) = ( 2 - racine ( 3x-2) ) / ( racine (2x+5) - 3 ) limite en 2 ?

3) f(x) = x sin (2/x) limite en 0 et en + l'infini ?

4) f(x) = racine ( x²+x+1) + x limite en - l'infini ?

Voila :p



fonfon
Membre Transcendant
Messages: 5451
Enregistré le: 18 Oct 2005, 07:53

par fonfon » 12 Sep 2006, 18:31

Salut, deja pour les limites avec les racines as-tu essayé l'expression conjuguée?

fonfon
Membre Transcendant
Messages: 5451
Enregistré le: 18 Oct 2005, 07:53

par fonfon » 12 Sep 2006, 18:34

Re, et pour la limit avec le sinus fais un changement de variable en posant :
X=2/x

A+

Benco
Membre Naturel
Messages: 56
Enregistré le: 12 Sep 2006, 18:21

par Benco » 12 Sep 2006, 18:45

Bonjour, pour les racines j'ai essayé les qauntités conjugués et pour ce qui est de changement de variable je connais pas cette methode, nous sommes qu'au debut de l'annee de TS !
Mais merci pour votre aide.

fonfon
Membre Transcendant
Messages: 5451
Enregistré le: 18 Oct 2005, 07:53

par fonfon » 12 Sep 2006, 18:51

Re,

tu y arrives avec l'expression conjuguée?

sinon pour le changement de variable à mon avis on peut y penser même si tu es au debut de ta terminale car je pense que tu as dû voir que:

non?

Benco
Membre Naturel
Messages: 56
Enregistré le: 12 Sep 2006, 18:21

par Benco » 13 Sep 2006, 12:28

Oui c'est bon j'ai reussi a faire la limite de avec le sinus en + l'infini :p

Celle qui me bloque le plus est la 4°

fonfon
Membre Transcendant
Messages: 5451
Enregistré le: 18 Oct 2005, 07:53

par fonfon » 13 Sep 2006, 12:47

Salut,


Flodelarab
Membre Légendaire
Messages: 6574
Enregistré le: 29 Juil 2006, 14:04

par Flodelarab » 13 Sep 2006, 13:26

fonfon a écrit:Salut,



Que c compliqué!!!

et si on factorisait par x tout simplement ?

fonfon
Membre Transcendant
Messages: 5451
Enregistré le: 18 Oct 2005, 07:53

par fonfon » 13 Sep 2006, 13:30

Si tu factorises directement par x tu n'auras pas la bonne limite

Benco
Membre Naturel
Messages: 56
Enregistré le: 12 Sep 2006, 18:21

par Benco » 13 Sep 2006, 13:55

Je suis arrivé exactement là ou tu m'as dit mais je fais quoi apres ?

fonfon
Membre Transcendant
Messages: 5451
Enregistré le: 18 Oct 2005, 07:53

par fonfon » 13 Sep 2006, 14:01

Re,



et en + inf ou -inf, la limite d'une fonction rationnelle est ...

ps:attention à la valeurs absolue)

Benco
Membre Naturel
Messages: 56
Enregistré le: 12 Sep 2006, 18:21

par Benco » 13 Sep 2006, 15:18

Désolé je ne vois toujours pas car en plus dans ce dernier exemple vous passez de racine(..)-X a racine(..)+X ? Comment faites-vous ?
Merci deja pour votre precieuse aide :p

fonfon
Membre Transcendant
Messages: 5451
Enregistré le: 18 Oct 2005, 07:53

par fonfon » 13 Sep 2006, 15:33

oui, desolé c'est bien rac(..)-x


donc

or c'est la limite en -inf

donc

a toi de conclure

Flodelarab
Membre Légendaire
Messages: 6574
Enregistré le: 29 Juil 2006, 14:04

par Flodelarab » 13 Sep 2006, 16:20

Comme qui dirait que je vois une factorisation par x ...

fonfon
Membre Transcendant
Messages: 5451
Enregistré le: 18 Oct 2005, 07:53

par fonfon » 13 Sep 2006, 16:26

je suis d'accord qu'il y a une factorisation par x mais si tu la fait au depart je pense qu'il va y avoir comme un problème

Benco
Membre Naturel
Messages: 56
Enregistré le: 12 Sep 2006, 18:21

par Benco » 13 Sep 2006, 17:03

La limite est donc -1/2 c'est ca ?

fonfon
Membre Transcendant
Messages: 5451
Enregistré le: 18 Oct 2005, 07:53

par fonfon » 13 Sep 2006, 17:09

c'est bien ça :++:

Flodelarab
Membre Légendaire
Messages: 6574
Enregistré le: 29 Juil 2006, 14:04

par Flodelarab » 13 Sep 2006, 17:11

fonfon a écrit:je suis d'accord qu'il y a une factorisation par x mais si tu la fait au depart je pense qu'il va y avoir comme un problème

ça risque pas!, on fait la meme !

fonfon
Membre Transcendant
Messages: 5451
Enregistré le: 18 Oct 2005, 07:53

par fonfon » 13 Sep 2006, 17:18

je sais pas car:


Flodelarab
Membre Légendaire
Messages: 6574
Enregistré le: 29 Juil 2006, 14:04

par Flodelarab » 13 Sep 2006, 17:40



Je refuse l'idée de la "bonne limite" ... qui a faux ?

 

Retourner vers ✎✎ Lycée

Qui est en ligne

Utilisateurs parcourant ce forum : Aucun utilisateur enregistré et 38 invités

Tu pars déja ?



Fais toi aider gratuitement sur Maths-forum !

Créé un compte en 1 minute et pose ta question dans le forum ;-)
Inscription gratuite

Identification

Pas encore inscrit ?

Ou identifiez-vous :

Inscription gratuite