Ptite question..!!
Réponses à toutes vos questions après le Bac (Fac, Prépa, etc.)
-
izamane95
- Membre Rationnel
- Messages: 620
- Enregistré le: 31 Aoû 2006, 22:08
-
par izamane95 » 15 Sep 2007, 20:44
bonsoir
si f et g s'annulent au moins une fois, peut on en déduire f+g aussi ?
moi je pense qu'il ya des cas ou f+g ne s'annule pas je cherche dc un contre exemple
je sais que 1/x ne s'annule pas donc j'essai de trouver deux equations que qd je les additionnent je trouve 1/x
vous avez d'autres idées ........
merci d'avance
-
emdro
- Membre Complexe
- Messages: 2351
- Enregistré le: 11 Avr 2007, 16:37
-
par emdro » 15 Sep 2007, 20:46
bonsoir,
x -> 1+x s'annule
x -> 1-x s'annule
Pourtant, la somme x -> 2 ne s'annule jamais...
-
Flodelarab
- Membre Légendaire
- Messages: 6574
- Enregistré le: 29 Juil 2006, 14:04
-
par Flodelarab » 15 Sep 2007, 20:48
Tu cherches bien loin.
x² s'annule
(x-4)² s'annule
x²+(x-4)² ne s'annule évidemment jamais
-
izamane95
- Membre Rationnel
- Messages: 620
- Enregistré le: 31 Aoû 2006, 22:08
-
par izamane95 » 15 Sep 2007, 22:08
ok merci pour vous réponses
moi aussi j'ai trouvé un contre exemple mais il est trés compliqué....mais bon
j'ai une autre question: f(x) = ax+b
a) Montrer que est la fonction nulle ssi a et b sont nul ?là j'ai resonné par équivalence ax+b=0 a= -b/x si b=0 alors a=0( c'est ça qui me gene)
b)Donner une CNS portant sur a et b pour que f ne s'annule jamais
c)Donner une CNS portant sur a et b pour que pour tout x reel on ait f(x)>=0
merci encore (coup de pouce ??)
-
fahr451
- Membre Transcendant
- Messages: 5142
- Enregistré le: 05 Déc 2006, 23:50
-
par fahr451 » 15 Sep 2007, 22:12
a) raisonnement faux
sens a= b = 0 => f = 0 clair
sens f = 0 => a=b=0?
f= 0 => f(0)= f(1)=0=> a=0 et a+b= 0=>a=b=0
-
izamane95
- Membre Rationnel
- Messages: 620
- Enregistré le: 31 Aoû 2006, 22:08
-
par izamane95 » 15 Sep 2007, 22:21
fahr451 a écrit:a) raisonnement faux
sens a= b = 0 => f = 0 clair
sens f = 0 => a=b=0?
f= 0 => f(0)= f(1)=0=> a=0 et a+b= 0=>a=b=0
mais f(0)=f(1)implique dans mon cas que b= a+b ( f(0) = b et f(a)= a+b)
j'ai dejà pensé ç cela mais j'ai laché à ause de ça ..!!!
-
fahr451
- Membre Transcendant
- Messages: 5142
- Enregistré le: 05 Déc 2006, 23:50
-
par fahr451 » 15 Sep 2007, 22:23
b = a+b ( j'ai interverti par mégarde les deux) = 0 ...
-
izamane95
- Membre Rationnel
- Messages: 620
- Enregistré le: 31 Aoû 2006, 22:08
-
par izamane95 » 15 Sep 2007, 22:27
OK c'est bon pour la a
-
izamane95
- Membre Rationnel
- Messages: 620
- Enregistré le: 31 Aoû 2006, 22:08
-
par izamane95 » 15 Sep 2007, 22:29
pour la b) j'ai mis il faut que a soit différent de -b/x et que x soit non nul
c ok ??
pour la c) j'ai mis il faut que x >= -b/a et a non nul ...
ça suffit??
-
fahr451
- Membre Transcendant
- Messages: 5142
- Enregistré le: 05 Déc 2006, 23:50
-
par fahr451 » 15 Sep 2007, 22:34
b)la question écrite comme tu l'as écrite est
CNS sur a et b pour que a et b ne soient pas nuls
la réponse est .... a et b non nuls ...
donne donc la "vraie" question
-
izamane95
- Membre Rationnel
- Messages: 620
- Enregistré le: 31 Aoû 2006, 22:08
-
par izamane95 » 15 Sep 2007, 22:37
ah oui désolé
la question est
b)Donner une CNS portant sur a et b pour que f ne s'annule jamais
-
fahr451
- Membre Transcendant
- Messages: 5142
- Enregistré le: 05 Déc 2006, 23:50
-
par fahr451 » 15 Sep 2007, 22:43
tu vois bien que ta réponse ne peut aller la condition ne peut pas porter sur x ....
je la formule autrement
CNS pour qu 'une droite ne recoupe pas l'axe des abscisses ?
-
izamane95
- Membre Rationnel
- Messages: 620
- Enregistré le: 31 Aoû 2006, 22:08
-
par izamane95 » 15 Sep 2007, 22:47
ahh il faut juste que a soit egale à 0 et b une constante
nn?
-
fahr451
- Membre Transcendant
- Messages: 5142
- Enregistré le: 05 Déc 2006, 23:50
-
par fahr451 » 15 Sep 2007, 22:48
oui a= 0 et b = constante non nulle
-
izamane95
- Membre Rationnel
- Messages: 620
- Enregistré le: 31 Aoû 2006, 22:08
-
par izamane95 » 15 Sep 2007, 22:55
ET POUR LA c)Donner une CNS portant sur a et b pour que pour tout x reel on ait f(x)>=0
J'ai mis il faut que a soit égale à x et b appartient à R+
t'es d'accord ??
-
fahr451
- Membre Transcendant
- Messages: 5142
- Enregistré le: 05 Déc 2006, 23:50
-
par fahr451 » 15 Sep 2007, 22:56
pas plus
la condition ne peut pas dépendre de x
essaye donc de l'interpréter en terme de droite du plan comme j'ai déjà fait
-
izamane95
- Membre Rationnel
- Messages: 620
- Enregistré le: 31 Aoû 2006, 22:08
-
par izamane95 » 15 Sep 2007, 23:50
ahh ok ok
bon dans ce cas il faut que a soit positif et b appatient à R+
??
-
fahr451
- Membre Transcendant
- Messages: 5142
- Enregistré le: 05 Déc 2006, 23:50
-
par fahr451 » 15 Sep 2007, 23:52
non
on veut une droite qui ne passe pas strictement dans le demi plan "inférieur "
-
izamane95
- Membre Rationnel
- Messages: 620
- Enregistré le: 31 Aoû 2006, 22:08
-
par izamane95 » 15 Sep 2007, 23:56
Et BAH çA NE MARCHERAIT QUE SI ax +b est une constant donc a=0 et b une constante nul ou pas peu importe
-
fahr451
- Membre Transcendant
- Messages: 5142
- Enregistré le: 05 Déc 2006, 23:50
-
par fahr451 » 16 Sep 2007, 00:02
x n intervient pas
a= 0et b = constante positive
Utilisateurs parcourant ce forum : Aucun utilisateur enregistré et 38 invités