Mathématiques financières: que du bonheur!

Réponses à toutes vos questions après le Bac (Fac, Prépa, etc.)
nath18
Messages: 3
Enregistré le: 04 Déc 2011, 12:43

mathématiques financières: que du bonheur!

par nath18 » 04 Déc 2011, 12:48

Bonjour à tous, :we:

Non Non ce n'est pas une éloge des mathématiques financières qui est annoncée dans cette conversation mais plutôt un petit (grand) exercice de maths financières qui me pose quelques problèmes ...

Voilà l'énoncé:
Nous sommes le 1er juillet 2009, vous vivez pour l'instant dans un appartement dont vous êtes propriétaire. Vous l'avez acquis 150000 € il y a exactement 10 ans et il a été totalement financé par un emprunt à 6% sur 20 ans entrainant le versement de mensualités constantes. Vous vous sentez un peu à l'étroit et, ce 1er juillet 2009, vous achetez une petite maison et mettez en vente votre appartement. La conjoncture n'étant pas favorable, l'agence immobilière que vous chargez de la vente de votre appartement pense que cette vente devrait prendre quelques mois et au maximum un an.
Le prix de vente de votre appartement est de 190000€. Le prix d'achat de la maison est de 200000€ plus 7% de frais de notaire. Vous ne disposez d'aucune économie.
Comme vous devez continuer à payer les mensualités de l'emprunt de votre appartement jusqu'à sa vente et que vous ne connaissez pas avec certitude la date de celle-ci, votre banque vous propose de vous financer de la manière suivante :
- dans un premier temps, un premier prêt, dit prêt relais, vous apportera le capital nécessaire à l'achat de votre maison (prix d'achat et frais). Ce prêt sera à 3% et sera remboursé en totalité en une fois au moment de la vente de votre appartement sans versement intermédiaire.
- dès que la vente de votre appartement aura été conclue, vous utiliserez le montant de cette vente tout d'abord pour rembourser par anticipation le prêt qui a financé l'appartement puis, pour le montant restant pour rembourser une partie du prêt relais qui a permis l'achat de la maison. Le solde restant à rembourser de ce prêt relais serait alors apporté par un second prêt bancaire, contracté au moment de la vente de l'appartement. Ce second prêt sera un emprunt immobilier à 4% sur 15 ans entrainant le versement de mensualités constantes, la première intervenant un mois après la date de la vente de l'appartement.

Si la vente de l'appartement intervient le 1er juin 2010, quel sera le montant des mensualités du second prêt bancaire (contracté au moment la vente de l'appartement) ?

.... Oui vous l'aurez compris, cette exercice demande de raisonner en plusieurs étapes.

Voilà les solutions que je propose :

1ere étape : Calcul de l'annuité du prêt de l'appartement
150000=a * (1-(1.00487)^-240)/0.00487 = 1061.19 euros
0.00487 étant le taux mensuel équivalent à 6%.

2eme étape le pret relais (et là je vous avoue j'ai du mal à comprendre le principe de ce pret):
200000*1.07(frais de notaire)=214000
Formule : I=C*T*N
214000*0.03*(11*30/360)=5885
11 pour les 11 mois jusqu'au 1er juin. 30 pour 30 jours par mois
Donc au 1 juin 2010, ce pret relais est à rembourser pour un montant de 219885 EUROS.

3ème étape : Au moment de la vente
Il faut rembourser le pret de l'appartement qu'il reste à payer (10 ans)
X = 1061.19 * (1-(1.00487)^-240/0.00487 = 150000 (arrondi)

La vente de l'appartement va rembouser ce qu'il reste à payer :
190000-150000=40000

Ces 40000e serviront aussi à rembourser une partie du pret relais.
219885-40000=179885

Il nous reste à connaitre le montant de l'annuité, pour cela je propose:
179885 = a * (1-(1.00327)^-180)/0.00327


a=1323.74


Voilà, qu'en pensez vous? :doh:
Je pense ne pas bien comprendre l'étape 2... Que feriez vous?

Un grand merci d'avance pour ceux qui auront le courage de s'attaquer à l'exercice!



 

Retourner vers ✯✎ Supérieur

Qui est en ligne

Utilisateurs parcourant ce forum : Aucun utilisateur enregistré et 102 invités

Tu pars déja ?



Fais toi aider gratuitement sur Maths-forum !

Créé un compte en 1 minute et pose ta question dans le forum ;-)
Inscription gratuite

Identification

Pas encore inscrit ?

Ou identifiez-vous :

Inscription gratuite