Master distributions
Réponses à toutes vos questions après le Bac (Fac, Prépa, etc.)
-
sylvie123
- Messages: 2
- Enregistré le: 01 Nov 2006, 14:49
-
par sylvie123 » 01 Nov 2006, 14:59
Bonjour,
Probleme suivant à resoudre:
Soit L application lineaire continue ( L: D(R)->E(R) )
tq pr tout JD(R), aR,
L(Ja)=L(J) et Ja(x)=J(x-a)
on definit =L(I)(0) et I(x)=J(-x)
Montrer que TD'(R)
Merci bien
Sylvie
-
sylvie123
- Messages: 2
- Enregistré le: 01 Nov 2006, 14:49
-
par sylvie123 » 01 Nov 2006, 17:12
Désolée pour la forme de mon dernier message qui était un peu telégraphique...
Alors, j'apporte içi quelques précisions sur la méthode que je suis sencée appliquer.
Je pense à priori devoir démontrer la linéarité et la continuité de T, et j'imagine que les propriétés de L ne me suffiront pas à l'affirmer...
Les quelques renseignements donnés par l'ennoncé ne me permettent pas de passer l'expression de sous forme intégrale pour verifier linéarité et continuité, je ne sais donc pas par quel bout my prendre pour démontrer cela...
Si quelqu'un pouvait m'aider quelque peu à trouver l'inspiration, j'en serais très reconnaissante...
Merci beaucoup
Sylvie
Utilisateurs parcourant ce forum : Aucun utilisateur enregistré et 48 invités