Limites et développements limités

Réponses à toutes vos questions après le Bac (Fac, Prépa, etc.)
maaathssss
Messages: 4
Enregistré le: 28 Nov 2021, 21:27

limites et développements limités

par maaathssss » 28 Nov 2021, 21:30

Bonjour,

Voici le sujet de mon exercice :
Pour n>= 1, on définit les suites (Un) et (Vn) par :
Un = Σ(de k= 0 à n) (1-cos(1/√(n+k)))
Vn = Σ(de k=0 à n) (1/(2(n+k)))

Il faut établir que lim quand n tend vers + infini |Un -Vn| = 0

J'ai essayé avec des développements limités mais étant donné que c'est (n+k)^-(1/2) qui est composé par la cosinus ; même en factorisant par n ou k pour obtenir une forme (1+x)^b je n'aboutis à rien.
Par ailleurs la variable est n ou k ?

Merci a ceux qui m'aideront



tournesol
Membre Irrationnel
Messages: 1227
Enregistré le: 01 Mar 2019, 20:31

Re: limites et développements limités

par tournesol » 28 Nov 2021, 23:05

la variable , c'est n .
On utilisera au voisinage de 0
Si necessaire on pourra utiliser

Donc
Essaie de montrer que
Pour la somme des 1/(n+k) , minore chaque k par 0 pour obtenir un majorant de la somme .

maaathssss
Messages: 4
Enregistré le: 28 Nov 2021, 21:27

Re: limites et développements limités

par maaathssss » 28 Nov 2021, 23:41

Merci beaucoup!! j'ai juste encore quelques questions :

il ne faut donc pas faire le dl de 1/(n+k)^1/2 séparément pour procéder par composition ?
Donc
et à ce moment la je ne peux pas dire que 1/(n+k) tend vers 0 quand n tend vers +infini?

tournesol
Membre Irrationnel
Messages: 1227
Enregistré le: 01 Mar 2019, 20:31

Re: limites et développements limités

par tournesol » 29 Nov 2021, 02:13

1/(n+k) tend bien vers 0 quand n tend vers + l'infini mais pas qui tend vers ln 2 ( somme de Riemann)
si tu majores tous les k par n , tu obtiens 1/2 pour minorant de ta somme .
si tu minores tous les k par 0 , tu obtiens 1 pour majorant de la somme ; et , ça fait

maaathssss
Messages: 4
Enregistré le: 28 Nov 2021, 21:27

Re: limites et développements limités

par maaathssss » 29 Nov 2021, 23:53

Donc

juste simplement ; votre epsilon il vient d'ou? du dl et c'est comme un o() ? car si c'est cela je ne comprends pas pourquoi il est multiplié et non simplement additionné

tournesol
Membre Irrationnel
Messages: 1227
Enregistré le: 01 Mar 2019, 20:31

Re: limites et développements limités

par tournesol » 30 Nov 2021, 01:44

f=o(g) au voisinage de a ssi il existe une fonction de limite nulle en a et telle que:
f=g

maaathssss
Messages: 4
Enregistré le: 28 Nov 2021, 21:27

Re: limites et développements limités

par maaathssss » 30 Nov 2021, 15:09

super merci beaucoup pr votre aide tournesol!!

 

Retourner vers ✯✎ Supérieur

Qui est en ligne

Utilisateurs parcourant ce forum : Aucun utilisateur enregistré et 27 invités

Tu pars déja ?



Fais toi aider gratuitement sur Maths-forum !

Créé un compte en 1 minute et pose ta question dans le forum ;-)
Inscription gratuite

Identification

Pas encore inscrit ?

Ou identifiez-vous :

Inscription gratuite