22 résultats trouvés
Revenir à la recherche avancée
Jai jamais au grand jamais eu de problème en mathématique calcul 1-2-3, 90% minimum, mais depuis que j'ai commence le cours d’algèbre linéaire je galère, pourtant ca ne fait que 4 semaine. La question qui ma ete donné en devoir, j'ai même été voir mon professeur qui ma pas expliqué grand chose, je n...
- par Veelox
- 19 Fév 2017, 18:50
-
- Forum: ✯✎ Supérieur
- Sujet: Matrice d'application linéaire
- Réponses: 13
- Vues: 699
Je ne pense pas avoir compris, jai de la difficulté avec la notion dimage. Suis-je senser avoir trouver x+y et 3x+2y et ensuite resoudre?
- par Veelox
- 19 Fév 2017, 03:52
-
- Forum: ✯✎ Supérieur
- Sujet: Matrice d'application linéaire
- Réponses: 13
- Vues: 699
Bonjour, jai vraiment un problème avec la question de construire une matrice d'application linéaire pour la projection sur la droite y=2x parallèlement à la droite y=3x. Schématiquement je comprend ce quil se passe cest le reste le probleme.
- par Veelox
- 18 Fév 2017, 23:41
-
- Forum: ✯✎ Supérieur
- Sujet: Matrice d'application linéaire
- Réponses: 13
- Vues: 699
En effet je connais les coordonnees cylindrique, spherique et le jacobien, par contre pour en ''fabrique'' un je connais pas du tout et pour le 2ieme effectivement cetai ma borne en z qui etait mauvaise jai pu le reussir.
- par Veelox
- 05 Déc 2016, 02:01
-
- Forum: ✯✎ Supérieur
- Sujet: Volume integral triple
- Réponses: 9
- Vues: 828
Cest un livre de note de cours ecrit par un de mes professeur que lom utilise en classe mais je suis au Quebec moi donc cest peut etre nos petite différence de vulgarisation
- par Veelox
- 05 Déc 2016, 00:30
-
- Forum: ✯✎ Supérieur
- Sujet: Volume integral triple
- Réponses: 9
- Vues: 828
Pour évite toute ambiguïté je vais ecrire les questions comme elle sont littéralement presente : trouvez le volume du solide delimite par les surfaces y^2+z^2=4x, x=3 et inferieur a y^2=x et evaluer lintegral suivante : triple integral 1/(x+y+z+1)^3 dV ou V est le volume delimite par les plans coord...
- par Veelox
- 04 Déc 2016, 21:34
-
- Forum: ✯✎ Supérieur
- Sujet: Volume integral triple
- Réponses: 9
- Vues: 828
Bonjour je me retrouv encore face a deux problèmes ou jai de la difficilte a borner. Je doit trouver le volume du solide entre y^2+z^2=4x, x=3, y^2=x. Et le volume du solide limite par les plans coordonees et.le plan x+y+z=1 avec la triple integral de 1/(x+y+z+1)^(3). Mes recherches sur le net ont e...
- par Veelox
- 04 Déc 2016, 20:01
-
- Forum: ✯✎ Supérieur
- Sujet: Volume integral triple
- Réponses: 9
- Vues: 828
Bonjour, je dois calculer laire de la région entre y=x, y=2x, xy=1 et xy=4. Avec u=xy, v=y/x. Jai ensuite trouver mes points trouver et mon jacobien qui est 1/4v + 1/4v^(1/2). Mais jai fait une erreur quelques part lorsque j'intergre u de 1 a 4 et v de 1 a 2. Ma reponse finale est 3/4*ln (2)+1/2 au ...
- par Veelox
- 04 Déc 2016, 16:35
-
- Forum: ✯✎ Supérieur
- Sujet: Calculer l'aire avec jacobien
- Réponses: 2
- Vues: 386
Tu as mal lu puisque tu continues à mélanger les y(x) et y(t) . Il te l'a dit : z(t)=y(x) (on a changé de fonction ) et multiplier par x^2 ( e^{2t} ) que tu as supposé non nul ce n'est pas une grande invention. Et tu te retrouves avec z''-z'+z=0 que tu sa...
- par Veelox
- 18 Sep 2016, 12:12
-
- Forum: ✯✎ Supérieur
- Sujet: Equation differentiel Euler
- Réponses: 7
- Vues: 463
Obligatoire ou pas n'empêche pas de dire qu'on se place sur les réels strictement positifs. Et être bloqué après la réponse de Ben314 ? As-tu lu cette réponse ? Jai parfaitement lu par contre ou je bloque est que jai y'(x)=y'(t)*1/x et y''(x)=y''(t)*1/x^2 + y'(t)*-1/(x^2) ensuite je dois remplacer?...
- par Veelox
- 17 Sep 2016, 16:30
-
- Forum: ✯✎ Supérieur
- Sujet: Equation differentiel Euler
- Réponses: 7
- Vues: 463
Le changement de variable que je dois utiliser est obligatoire et.les etapes que jai deja fait est le bon debut. Je dois juste continuer mais je suis bloquer je sais quil me reste 1 ou 2 etape avant de pouvoir remplacer dans mon equations et je dois avoir du y (t)
- par Veelox
- 17 Sep 2016, 12:12
-
- Forum: ✯✎ Supérieur
- Sujet: Equation differentiel Euler
- Réponses: 7
- Vues: 463
Bonjour, j'ai une equation differentiel à resoudre et jai de la difficulté. Jai x^2(d^2y/dx^2)+y=0 et je dois utiliser le changement de variable x=e^t donc ln(x)=t. mon equation devient donc e^(2t)(d^2y/dx^2)+y=0 . je sais que dy/dx=dy/dt*1/x et que d^2y/dx^2=d(dy/dt)...
- par Veelox
- 16 Sep 2016, 22:12
-
- Forum: ✯✎ Supérieur
- Sujet: Equation differentiel Euler
- Réponses: 7
- Vues: 463
Produit matriciel exemple : si tu as une matrice 1x2 et.2x4. Tu peux faire 1x2 * 2x4 ce qui donnerait 1x4 et non linverse
- par Veelox
- 06 Sep 2016, 15:25
-
- Forum: ✯✎ Supérieur
- Sujet: Produit matriciel
- Réponses: 4
- Vues: 574
Bonjour 1) C'est un résultat général sur les séries. Si la série \sum a_nz^n converge pour |z| < R la série \sum a_nz^{2n} converge certainement pour |z^2| < R c'est-à-dire pour |z|< \sqrt R . 2) Ecris la série à intégrer, intègre là et majore le reste. Merci beaucoup de votre aide. Pour le 2) jai ...
- par Veelox
- 05 Sep 2016, 19:29
-
- Forum: ✯✎ Supérieur
- Sujet: Question series de taylors
- Réponses: 5
- Vues: 280