Vecteur de l'espace
Réponses à toutes vos questions de la 2nde à la Terminale toutes séries
-
phil16
- Membre Naturel
- Messages: 17
- Enregistré le: 04 Avr 2013, 17:43
-
par phil16 » 04 Avr 2013, 18:07
Bonjour, j'ai besoin de votre correction et d'une aide pour une question.
A(2;1;-1); B(-1;2;4) C(0;-2;3) D(2;1;-1)
1) A, B et C définissent ils un plan ?
Fait, vecteur AC et AB non colinéaire donc définissent ce plan.
2) Donner représentation paramétrique de (AC)
Vecteur AC(-2;-3;4) , j'ai pris le point C pour x0, y0 et zo
Soit représentation paramétrique AC : 0 - 2t
-2 - 3t
3 + 4t
3) representation paramétrique de (d) x = - 1 +t
y = 2 + 3/2t
z = 4 -2t
a) que peut on dire des droites AC et d
je pense qu'elle sont sécantes donc je resout un systeme
Soit: -1 + t = -2t'
-2 - 3t = 2 + 3/2t'
3 + 4t = 4 - 2t'
Sa bug ici, je trouve des résultats mais ils sont faux
Dernière question. b) S la sphère de centre C et de rayon CA. Le point D appartient il à cette sphère ?
Merci d'avance de vos aides.
-
phil16
- Membre Naturel
- Messages: 17
- Enregistré le: 04 Avr 2013, 17:43
-
par phil16 » 04 Avr 2013, 18:16
pour la question 3)a) pour tout vous dire, je suis arrivé ici: t= 1/2t'
-2-3(1/2t') = 2 + 3/2t'
3 + 4(1/2t') = 4 -2t'
<=> t= 1/2t'
- 2 -3/2 t' = 2 +3/2t'
3 +2t' = 4 - 2t'
La je pense avoir faux même quand je veux trouver t'=...
Car j'ai t'= 1 /2 t'
t = 2
t= 1
Or je pense qu'on doit trouver 2 fois la même chose pour t'....
-
L.A.
- Membre Irrationnel
- Messages: 1709
- Enregistré le: 09 Aoû 2008, 16:21
-
par L.A. » 04 Avr 2013, 18:25
Bonjour.
3)a) C'est peut-être que les deux droites ne sont pas sécantes... peux-tu donner un vecteur directeur de (d) ?
b) Tu peux faire un calcul de distances.
-
phil16
- Membre Naturel
- Messages: 17
- Enregistré le: 04 Avr 2013, 17:43
-
par phil16 » 04 Avr 2013, 18:31
Bonjour LA.
En effet, vu qu'on a la représentation paramétrique de (d)
Je peux déduire un vecteur directeur soit: x = 1
y= 3/2
z = -2
Soit un vecteur u(1; 3/2 ;-2)
-
phil16
- Membre Naturel
- Messages: 17
- Enregistré le: 04 Avr 2013, 17:43
-
par phil16 » 04 Avr 2013, 18:58
Que pourrais je faire ensuite ?
-
L.A.
- Membre Irrationnel
- Messages: 1709
- Enregistré le: 09 Aoû 2008, 16:21
-
par L.A. » 04 Avr 2013, 19:06
Très bien. Alors, verdict ? est-ce que les deux droites sont sécantes ? Quel est le lien entre les deux vecteurs directeurs ?
-
phil16
- Membre Naturel
- Messages: 17
- Enregistré le: 04 Avr 2013, 17:43
-
par phil16 » 04 Avr 2013, 19:13
A oui, c'est beaucoup plus facile comme ceci, j'ai cherché à faire très compliqué...
Je pense que les 2 droites sont parallèles car -2*3/2 = - 3 * 1 donc les AC et (d) colinéaires n'est ce pas ?
Donc on peut en déduire, qu'elles sont strictement parallèles.
Reste à savoir si je peux dire qu'elles sont confondus....
-
phil16
- Membre Naturel
- Messages: 17
- Enregistré le: 04 Avr 2013, 17:43
-
par phil16 » 04 Avr 2013, 19:15
Je devrais peut être montrer que le point A et le point C sont sur la droite (d)
Si ils ne le sont pas, alors elles ne sont pas confondus non ?
-
phil16
- Membre Naturel
- Messages: 17
- Enregistré le: 04 Avr 2013, 17:43
-
par phil16 » 04 Avr 2013, 19:21
Après calcul, je trouve
t= 3
t = 2/3
t= -2/5
Donc le système n'a pas de solution alors A n'appartient pas à (d) donc elles sont bien strictement parallèles.
-
L.A.
- Membre Irrationnel
- Messages: 1709
- Enregistré le: 09 Aoû 2008, 16:21
-
par L.A. » 04 Avr 2013, 19:46
Je suis d'accord.
Pour la question de la sphère maintenant ?
-
phil16
- Membre Naturel
- Messages: 17
- Enregistré le: 04 Avr 2013, 17:43
-
par phil16 » 04 Avr 2013, 19:55
J'ai oublié une question avant celle de la sphère désolé.
Donner les coordonnées d'un point E tel que ACBE soit un parallélogramme.
-
phil16
- Membre Naturel
- Messages: 17
- Enregistré le: 04 Avr 2013, 17:43
-
par phil16 » 04 Avr 2013, 20:10
je suis pas sur, mais faut-il faire:
Vecteur AC = Vecteur BE
C'est à dire: (-3;1;5) = (xe + 1; ye - 2; ze - 4)
Donc xe = -4
ye = 3
ze = 9
est ce cela ?
-
phil16
- Membre Naturel
- Messages: 17
- Enregistré le: 04 Avr 2013, 17:43
-
par phil16 » 04 Avr 2013, 20:36
Si cela est exact, j'ai aucune idée pour l'instant pour la question sur la sphère...
-
L.A.
- Membre Irrationnel
- Messages: 1709
- Enregistré le: 09 Aoû 2008, 16:21
-
par L.A. » 04 Avr 2013, 20:57
C'est la bonne méthode, mais je crois que tu as pris AB au lieu de AC.
Et deuxièmement, ce ne sont pas les vecteurs AC et BE qui sont égaux dans un parallélogramme ACBE: il y a une inversion.
Pour la sphère, calcule les distances CA et CD et tu pourras conclure.
-
phil16
- Membre Naturel
- Messages: 17
- Enregistré le: 04 Avr 2013, 17:43
-
par phil16 » 04 Avr 2013, 21:12
Je prendrai alors AC et AE
-2 = xe - 2
-3 = ye -1
4 = ze + 1
J'ai donc xe = 0
ye = -2
ze = 3
Voilà.
Pour la cas de la sphère:
Je trouve CA = V29
CD = V26
le rayon fait V29 et D = V26 donc D appartient à la sphère ?
-
L.A.
- Membre Irrationnel
- Messages: 1709
- Enregistré le: 09 Aoû 2008, 16:21
-
par L.A. » 04 Avr 2013, 21:26
Non et non.
Dire que des vecteurs MN et PQ sont égaux revient à dire que MNQP est un parallélgramme.
Ensuite, on parle bien d'une sphère, pas d'une boule ? Une boule est pleine, une sphère est creuse.
Dire qu'un point M appartient à la sphère de centre O de rayon R revient à dire que OM=R
-
phil16
- Membre Naturel
- Messages: 17
- Enregistré le: 04 Avr 2013, 17:43
-
par phil16 » 04 Avr 2013, 21:51
Quels vecteurs prendre avec AC alors ?
BE.
C'était bon tout à l'heure, juste que j'avais pris AB
Je n'ai pas compris la cas de la sphère.
C'est bien D appartient à CA donc appartient à la sphere
-
phil16
- Membre Naturel
- Messages: 17
- Enregistré le: 04 Avr 2013, 17:43
-
par phil16 » 04 Avr 2013, 21:59
C'est la bonne celle là ^^
-2 = xe + 1
-3 = ye -2
4 = ze - 4
xe = -3
ye = -1
ze = 8
-
L.A.
- Membre Irrationnel
- Messages: 1709
- Enregistré le: 09 Aoû 2008, 16:21
-
par L.A. » 04 Avr 2013, 22:35
Ce n'est pas BE, c'est EB.
La distance CD n'est pas égale à V26
-
phil16
- Membre Naturel
- Messages: 17
- Enregistré le: 04 Avr 2013, 17:43
-
par phil16 » 05 Avr 2013, 17:57
En effet, je toruve également V29 pour CD
CA=CD donc D appartient à CA et donc à la sphère, c'est ça ?
Fuuu, j'ai tout fait...
On a donc pour la question du parallélogramme
xe = 1
ye = 5
ze = 0
Utilisateurs parcourant ce forum : Aucun utilisateur enregistré et 33 invités