Dm de spé maths

Réponses à toutes vos questions de la 2nde à la Terminale toutes séries
Kindy
Messages: 2
Enregistré le: 19 Oct 2010, 16:45

dm de spé maths

par Kindy » 19 Oct 2010, 16:55

Bonjour, je me retrouve devant mon dm de maths spé, une question sur trois résolue... :mur: :mur: J'ai beau réfléchir je ne sais pas d'où partir pour faire ces démonstrations... C'est pour cela que j'aurai bien besoin de votre aide s'il vous plait !

Soient n un entier naturel non nul , et a un entier relatif. Pour tout entier naturel k , on note r indice k le reste de la division euclidienne de a puissance k ( soit a^k ) par n .

1 - Démontrer proprement que la suite ( r indice k) est périodique à partir d'un certain rang, c'est à dire qu'il existe un entier naturel non nul p (période) et un entier naturel k zero (k0) tels que :
Pour tout k supérieur ou égal a k0, r indice k+p = r indice k

2 - On note p0 la plus petite période de la suite ( r indice k ) . Démontrer que toutes les périodes de ( r indice k ) sont des multiples de p0. ( on dit que p0 est la periode principale de a^k modulo n ) .
On pourra par exemple prouver que le reste de la division euclidienne de p par p0 est nul


Par contre la troisième question : quelle est la période principale de 4puissance k modulo a pour ? a=10 a=3 a=13 ... Je pense avoir trouvé mais je voudrais avoir confirmation. J'ai trouvé le reste pour différents k par exemple pour le premier :

4^0 congru à 1 modulo 10
4^1 congru à 4 modulo 10
4^2 congru à 6 modulo 10
4^3 congru à 4 modulo 10
4^4 congru à 6 modulo 10

j'en ai donc conclu que la période principale était de 2 à partir du rang 1 est ce que c'est une justification correcte ou il faut y ajouter quelque chose ?

Merci pour vos futures réponses !



Finrod
Membre Irrationnel
Messages: 1944
Enregistré le: 24 Sep 2009, 10:00

par Finrod » 20 Oct 2010, 09:35

Vérifie que et

Sinon il se pourrait que la période n'est pas encore commencer, connaitre juste les premiers termes ne prouve à priori rien.

Alcapote
Messages: 1
Enregistré le: 20 Oct 2010, 19:51

par Alcapote » 20 Oct 2010, 19:56

Je dois être dans ta classe ! J'ai le même DM à faire pour demain et c'est en cherchant des réponses sur internet que j'ai vu que tu avais posé la question sur un forum. En fait après m'être bien trituré la tête (un bon quart d'heure) :marteau: je crois que je peux en conclure que ce DM n'est pas humainement faisable ! :zen:
Je lance donc le défi à un des matheux de ce forum de le résoudre où au moins de trouver la piste principale d'où découlera facilement la suite du raisonnement! Le seul problème c'est qu'il faut le rendre demain...

Kindy
Messages: 2
Enregistré le: 19 Oct 2010, 16:45

par Kindy » 24 Oct 2010, 09:14

En effet torture de l'esprit...
Enfin maintenant c'est fait !
Merci pour ta réponse Finrod

 

Retourner vers ✎✎ Lycée

Qui est en ligne

Utilisateurs parcourant ce forum : Aucun utilisateur enregistré et 52 invités

Tu pars déja ?



Fais toi aider gratuitement sur Maths-forum !

Créé un compte en 1 minute et pose ta question dans le forum ;-)
Inscription gratuite

Identification

Pas encore inscrit ?

Ou identifiez-vous :

Inscription gratuite