Bonjour chers gens du Forum d'Ile Maths!
J'ai un DM de Maths à faire, et j'ai un exercice que je n'ai absolument pas compris...
Pouvez-vous m'aider à comprendre s'il vous plaît, ça sera très gentil de votre part.
ENONCE:
Le plan complexe est rapporté au repère orthonormé direct (O; vectu, vectv), unité: 4 cm.
On désigne par A et B les points d'affixes respectives i et 1+i.
On représentera les données sur une figure que l'on complètera progressivement.
On considère l'application f qui, à tout point M d'affixe z non nul, associe le point M' d'affixe z' = -2/z.
1) Déterminer l'image A' de A par f et l'image B' de B par f. Mettre les affixes de A' et B' sous forme exponentielle.
2) Déterminer les points I et J invariants par f (cad solution de l'équation M' = M).
3) Exprimer OM' en fonction de OM.
Exprimer (vectu, vectOM') en fonction de (vectu, vectOM). En déduire que les demi-droites [OM) et [OM') sont symétriques par rapport à l'axe des imaginaires purs.
4) Montrer que si M appartient au cercle C de centre O et de rayon 2, alors M' est aussi sur C.
5) Soit D la droite d'équation y = 1.
a) Montrer que si M apparteint à D, alors M' appartient à un cercle T dont on déterminera le centre et le rayon.
b) En utilisant le résultat précédent, indiquer comment constrauire l'image M' par f d'un point M de D. Faire cette construction.
Je ne sais pas comment répondre à la première question... =/
AIDEZ-MOI SVP. Merci d'avance.
