Mise en équation d'un problème
Réponses à toutes vos questions de la 2nde à la Terminale toutes séries
-
squalex
- Membre Naturel
- Messages: 38
- Enregistré le: 29 Mar 2008, 19:17
-
par squalex » 31 Mai 2008, 14:26
Bonjour, j'ai un problème où je dois trouver un système d'équation sauf que je n'arrive pas à la trouver
soit:
Une urne contient des boules bleues et des boules vertes.
Si l'on enlève 2 Boules bleues, elles représentent les 3/5 du total des boules restantes.
Si l'on ajoute 6 boules vertes dans l'urne de départ, les boules bleues représentent la moitié des boules présentes dans l'urne.
Combien l'urne contient-elle au début de boules bleues et de boules vertes?
Je pense que c'est l'équation:
{x-2= 3/5x +y
{y+6= 1/2x +y
(je mets des espace pour bien différencier) soit x les boules bleues et y les boules vertes mais j'ai aussi un gros problème pour la résoudre merci de votre aide.
-
XENSECP
- Habitué(e)
- Messages: 6387
- Enregistré le: 27 Fév 2008, 19:13
-
par XENSECP » 31 Mai 2008, 14:54
Hum pas tout à fait
tu as bien paramétré mais c'est plutot (x-2)=3/5*(x-2+y) et (y+6)=1/2*(x+y+6) ;)
-
johny-walker
- Membre Naturel
- Messages: 19
- Enregistré le: 26 Déc 2007, 16:44
-
par johny-walker » 31 Mai 2008, 14:54
Salut! J'aurais fait comme ca.
Soit x le nombre de boules bleues et y le nombre de boules vertes. On designe respectivement les boules bleues et les boules vertes par les lettres b et v.
On a le systeme : {bx-2b=(3/5)(bx+vy-2b)}
{bx=(1/2)(bx+vy+6v)} d'inconnues x et y.
-
squalex
- Membre Naturel
- Messages: 38
- Enregistré le: 29 Mar 2008, 19:17
-
par squalex » 31 Mai 2008, 15:36
Merci j'ai compris maintenant
Utilisateurs parcourant ce forum : Aucun utilisateur enregistré et 68 invités