Serie de fourier
Réponses à toutes vos questions après le Bac (Fac, Prépa, etc.)
-
MAV
- Membre Naturel
- Messages: 11
- Enregistré le: 01 Mar 2019, 13:47
-
par MAV » 07 Mar 2019, 09:38
bonjour à tous; svp j'ai commencé à faire un exercice mais je bloque a niveau. merci d'avance de votre aide
enonce:
soit f une fonction definie de R vers R; 2pi periodique , f(x)= e^x sur ]-pi; pi]
1- calculer les coefficients de fourier exponentiels de f
2- etudier la convergence ( simple, uniforme) de la serie
3- calculer les sommes suivantes
-
aviateur
par aviateur » 07 Mar 2019, 10:16
Bjr
tu peux au moins donner les coefficients de Fourier que tu as trouvés.
-
LB2
- Habitué(e)
- Messages: 1504
- Enregistré le: 05 Nov 2017, 16:32
-
par LB2 » 07 Mar 2019, 21:54
Bonjour,
je connais les coefficients de Fourier, mais les coefficients de Fourier exponentiels, jamais entendu parler... ça existe, ce machin là ?
-
aviateur
par aviateur » 07 Mar 2019, 23:58
Bonjour
Oui ça existe . Pour la période

la base orthogonale est

Pour qu'elle soit orthonormée le produit scalaire est :
\bar{g(x)} dx)
La facteur

est facile à retrouver en calculant

La correspondance de cette b.o.n de Fourier avec la base trigo est donnée grâce à
=cos( n\pi .))
et
(e_n- e_n)=sin( n\pi.))
-
LB2
- Habitué(e)
- Messages: 1504
- Enregistré le: 05 Nov 2017, 16:32
-
par LB2 » 08 Mar 2019, 00:44
ah! je connaissais! mais je les appelle les coefficients de Fourier complexes! merci pour la clarification
-
MAV
- Membre Naturel
- Messages: 11
- Enregistré le: 01 Mar 2019, 13:47
-
par MAV » 08 Mar 2019, 08:41
est ce que vous pourriez m'aider a calculer les coefficients de fourier et etudier la convergence? svp
-
Lostounet
- Membre Légendaire
- Messages: 9665
- Enregistré le: 16 Mai 2009, 11:00
-
par Lostounet » 08 Mar 2019, 08:52
MAV a écrit:est ce que vous pourriez m'aider a calculer les coefficients de fourier et etudier la convergence? svp
Salut,
Tu as dans ton cours une formule pour calculer
)
?
Sinon, tu dois avoir dans ton cours des formules pour calculer
)
et
)
Merci de ne pas m'envoyer de messages privés pour répondre à des questions mathématiques ou pour supprimer votre compte.
-
aviateur
par aviateur » 08 Mar 2019, 10:06
Bonjour
Bon je peux donner une indication supplémentaire de @lostounet si
=e^x)
sur
)
, e^{inx}>)
c'est à dire que ça va être une intégrale sous la forme d'une exponentielle donc facile à calculer. (au passage ça me fait penser que c'est une bonne raison de passer par là avant d'écrire la serei en cos et sin)
Pour
)
et
)
tu peux utiliser les formules de cours mais tu peux grâce à la réponse que j'ai donnée à LB2
directement à partir des
)
Utilisateurs parcourant ce forum : Aucun utilisateur enregistré et 38 invités