Séries et inégalités maths sup analyse
Réponses à toutes vos questions après le Bac (Fac, Prépa, etc.)
-
caithana
- Membre Naturel
- Messages: 12
- Enregistré le: 18 Aoû 2018, 19:50
-
par caithana » 01 Sep 2018, 19:18
bonjour,
je bloque à cette question de maths j'ai réussi les deux avant je vous réécrit l'énoncé
pour n dans N, on pose Sn= \sum_{k=0}^{n}\frac{(-1)^k}{2k+1} ; un= S2n et vn=S2n+1
dans la première question j'ai montré que un et vn sont adjacentes.
J'en ai déduis que Sn est convergente.
Maintenant on note S sa somme .
on me demande:
-démontrer que , pour tout n dans N, vn\le S\le un. en déduire une valeur approchée de S à 10^-3 près
je pensais chercher un DL à l'ordre 2 pour avoir f(x) - DL ordre 2équivalent à quelque chose de positif ou de négatif et si c'est positif la courbe représentative de la suite passe au dessus de l'asymptote et donc la suite est toujours au dessus de sa limite sinon c'est l'inverse.
Mai je n'arrive pas à arranger ma somme pour en faire un DL et je ne suis pas sûre de mon idée.
Merci
-
caithana
- Membre Naturel
- Messages: 12
- Enregistré le: 18 Aoû 2018, 19:50
-
par caithana » 01 Sep 2018, 19:31
Pardon les caractères sont mal passés.
pour n dans N, on pose Sn=
^k}{2k+1})
; un=

et

=

dans la première question j'ai montré que un et vn sont adjacentes.
J'en ai déduis que

est convergente.
Maintenant on note S sa somme .
on me demande:
-démontrer que , pour tout n dans N,


S

. en déduire une valeur approchée de S à

près
-
Ben314
- Le Ben
- Messages: 21709
- Enregistré le: 11 Nov 2009, 21:53
-
par Ben314 » 01 Sep 2018, 19:39
Salut,
Y'a un truc qui m'échappe un peu : quand tu dit que "tu as démontré que les suites étaient adjacentes", en fait, tu as démontré quoi concernant les deux suites ?
Qui n'entend qu'un son n'entend qu'une sonnerie. Signé : Sonfucius
-
caithana
- Membre Naturel
- Messages: 12
- Enregistré le: 18 Aoû 2018, 19:50
-
par caithana » 01 Sep 2018, 20:57
on m'a demandé de démontrer que un et vn forment un couple de suites adjacentes.
-
Ben314
- Le Ben
- Messages: 21709
- Enregistré le: 11 Nov 2009, 21:53
-
par Ben314 » 02 Sep 2018, 06:07
Certes, certes, mais c'est quoi des suites adjacentes ?
Parce que là, le résultat qu'on te demande de montrer, ben il découle immédiatement de la définition de ce que sont des "suites adjacentes".
Qui n'entend qu'un son n'entend qu'une sonnerie. Signé : Sonfucius
-
caithana
- Membre Naturel
- Messages: 12
- Enregistré le: 18 Aoû 2018, 19:50
-
par caithana » 02 Sep 2018, 12:19
Ah oui merci!!
Utilisateurs parcourant ce forum : Aucun utilisateur enregistré et 31 invités