DM probabilités
Réponses à toutes vos questions de la 2nde à la Terminale toutes séries
-
Frgt
- Membre Naturel
- Messages: 17
- Enregistré le: 26 Oct 2015, 12:36
-
par Frgt » 14 Déc 2015, 18:43
Bonsoir. Alors voila je suis en terminale S et j'ai un soucis au niveau des proba...j'ai u dm à faire mais je sèche totalement...
Alors voici le sujet :
-> un joueur évite un jus video et effectue plus ufs parties successives. On admet que :
la probabilité qu'il gagne la première partie est de 0.1
s'il gagne une partie, la probabilité de gagner la suivante est de 0.8
s'il perd une partie, la probabilité de gagner la suivante est de 0.6
On note pour tout entier naturel n non nul : Gn l'evenement "le joueur gagne la n-ieme partie"
Pn la probabilité de l'événement Gn
On a p1= 0.1
[CENTER]QUESTIONS[/CENTER]
1)) montrer que p2= 0,62
2)) le joueur a gagné la deuxième partie. Calculer la probabilité qu'il ait perdu la première.
3)) calculer la probabilité que le joueur gagne ak moins une partie sur les trois premières partie.
4)) montrer que piur tout entier naturel n non nul : pn+1= 1/5Pn+3/5
5)) montrer par récurrence que pour tout entier naturel n non nul : Pn= 3/4-13/4(1/5)^n
6)) déterminer la limite de la suite (pn) quand n tend vers +l'infini
7)) pour quelles valeurs de n a-t-on 3/4-Pn < 10^-7
Alors pour la 1) j'ai essayé de faire un arbre pondéré mais ça ne m'a menée à rien..
Pour la 2) j'ai trouvé que ça faisait 5,4 à l'aide d'un arbre pondéré
Pour la 3) je pensais faire à l'aide d'un arbre toujours et apres le néant..
Voila merci d votre aide..
-
beagle
- Habitué(e)
- Messages: 8746
- Enregistré le: 08 Sep 2009, 14:14
-
par beagle » 14 Déc 2015, 18:48
" un joueur évite un jus video et effectue plus ufs parties successives"
"jus" = jeu , un jeu vidéo
"plus oeufs" = plusieurs
"évite" j'ai pas trouvé
L'important est de savoir quoi faire lorsqu'il n' y a rien à faire.
-
Frgt
- Membre Naturel
- Messages: 17
- Enregistré le: 26 Oct 2015, 12:36
-
par Frgt » 14 Déc 2015, 19:09
beagle a écrit:" un joueur évite un jus video et effectue plus ufs parties successives"
"jus" = jeu , un jeu vidéo
"plus oeufs" = plusieurs
"évite" j'ai pas trouvé
Omg c'est mon correcteur j'ai pas relu...alors :
Un joueur debute un jeu video et effectue plusieurs parties successives.....
Merci et desolee....
-
beagle
- Habitué(e)
- Messages: 8746
- Enregistré le: 08 Sep 2009, 14:14
-
par beagle » 14 Déc 2015, 19:10
bon alors pour la 1) pourquoi ton arbre ne marche pas?
gain en 1 c'est la branche p1 =0,1
comme gain les deux branches qui suivent sont gain 0,8 et perte 0,2
perte en 1 c'est la branche 1-p1 = 0,9
comme perte les deux branches à suivre sont gain 0,6 et perte 1-0,6=0,4
nous sommes à 4 branches
gain-gain =...
gain-perte 0,1 x 0,2
perte-gain =...
perte-perte= 0,9 x 0,4
donc l'addition des deux branches gains que je te laisse calculer...
L'important est de savoir quoi faire lorsqu'il n' y a rien à faire.
-
Frgt
- Membre Naturel
- Messages: 17
- Enregistré le: 26 Oct 2015, 12:36
-
par Frgt » 14 Déc 2015, 19:14
beagle a écrit:bon alors pour la 1) pourquoi ton arbre ne marche pas?
gain en 1 c'est la branche p1 =0,1
comme gain les deux branches qui suivent sont gain 0,8 et perte 0,2
perte en 1 c'est la branche 1-p1 = 0,9
comme perte les deux branches à suivre sont gain 0,6 et perte 1-0,6=0,4
nous sommes à 4 branches
gain-gain =...
gain-perte 0,1 x 0,2
perte-gain =...
perte-perte= 0,9 x 0,4
donc l'addition des deux branches gains que je te laisse calculer...
C'est exactement ce que j'avais!
Je trouve donc pou G/G = 0.1 x 0.8 = 0.08
Et perte/G = 0,9 x 0,6 = 0,54
D'où p2= 0,62 !
J'avais fait une erreur en disant quand 0.1 . 0.8 = 0.8....donc ça je l'avais!
-
beagle
- Habitué(e)
- Messages: 8746
- Enregistré le: 08 Sep 2009, 14:14
-
par beagle » 14 Déc 2015, 19:17
Frgt a écrit:C'est exactement ce que j'avais!
Je trouve donc pou G/G = 0.1 x 0.8 = 0.8
Et perte/G = 0,9 x 0,6 = 0,54
D'où p2= 1.34....? Je dois etre bete je comprend pas
Non pas bète, mais tu fais des erreurs de calcul,
un dizième de 0,8 ne va redonner 0,8 ...
L'important est de savoir quoi faire lorsqu'il n' y a rien à faire.
-
beagle
- Habitué(e)
- Messages: 8746
- Enregistré le: 08 Sep 2009, 14:14
-
par beagle » 14 Déc 2015, 19:18
Frgt a écrit:C'est exactement ce que j'avais!
Je trouve donc pou G/G = 0.1 x 0.8 = 0.08
Et perte/G = 0,9 x 0,6 = 0,54
D'où p2= 0,62 !
J'avais fait une erreur en disant quand 0.1 . 0.8 = 0.8....donc ça je l'avais!
OK, mais je décroche.
Ne quitte pas le collègue de garde ce soir va te répondre pour la suite ...
L'important est de savoir quoi faire lorsqu'il n' y a rien à faire.
-
Frgt
- Membre Naturel
- Messages: 17
- Enregistré le: 26 Oct 2015, 12:36
-
par Frgt » 14 Déc 2015, 19:23
beagle a écrit:OK, mais je décroche.
Ne quitte pas le collègue de garde ce soir va te répondre pour la suite ...
Merci deja d'avoir confirmé ma réponse pour le 1)!!
Utilisateurs parcourant ce forum : Aucun utilisateur enregistré et 52 invités