Ln et valeur absolue
Réponses à toutes vos questions de la 2nde à la Terminale toutes séries
-
jawan
- Membre Naturel
- Messages: 37
- Enregistré le: 07 Sep 2008, 08:59
-
par jawan » 07 Sep 2008, 09:06
bonjour à tous,
je viens de reprendre les cours et j'ai beaucoup de mal à étudier cette fonction et notamment son domaine de définition:
ln I x-1 I + x
j'ai du mal pour le domaine à cause de Valeur absolue, j'ai trouvé ]1;+ infini[
la question est: étudier cetter fonction: domaine, comportement aux bords du domaine, continuité, dérivabilité, variations, tracé.
est-ce que vous pouvez m'aider ?
merci beaucoup
-
L.A.
- Membre Irrationnel
- Messages: 1709
- Enregistré le: 09 Aoû 2008, 16:21
-
par L.A. » 07 Sep 2008, 09:11
Bonjour,
La valeur absolue complique tout, c'est vrai...
pour l'ens de déf, ce que tu as trouvé est faux : |x-1| est toujours >= 0, le ln n'est donc pas défini seulement aux points ou elle s'annule.
ensuite, pour étudier une fonction avec des valeurs absolues, il est toujours utile de distinguer et se placer sur plusieurs intervalles où elles se réécrivent plus simplement...
-
jawan
- Membre Naturel
- Messages: 37
- Enregistré le: 07 Sep 2008, 08:59
-
par jawan » 07 Sep 2008, 09:14
bonjour et merci de ta réponse L.A
je ne sais pas si j'ai bien compris:
le Df est donc: ]-infini;1[U]1; +infini[ ??
merci encore
-
L.A.
- Membre Irrationnel
- Messages: 1709
- Enregistré le: 09 Aoû 2008, 16:21
-
par L.A. » 07 Sep 2008, 09:16
[quote="jawan"]
le Df est donc: ]-infini;1[U]1; +infini[ ??
[\QUOTE]
C'est ça. Quels intervalles peut-on distinguer et pourquoi ?
-
jawan
- Membre Naturel
- Messages: 37
- Enregistré le: 07 Sep 2008, 08:59
-
par jawan » 07 Sep 2008, 09:29
je ne sais pas...
-
L.A.
- Membre Irrationnel
- Messages: 1709
- Enregistré le: 09 Aoû 2008, 16:21
-
par L.A. » 07 Sep 2008, 09:33
exemple :
pour |2x+4|
si 2x+4 > 0 <=> x > -2 alors |2x+4| = 2x+4
si 2x+4 < 0 <=> x < -2 alors |2x+4| = -(2x+4)
déjà vu ça, non ?
-
jawan
- Membre Naturel
- Messages: 37
- Enregistré le: 07 Sep 2008, 08:59
-
par jawan » 07 Sep 2008, 09:41
oui je crois, il faut enlever les VA ?
-
L.A.
- Membre Irrationnel
- Messages: 1709
- Enregistré le: 09 Aoû 2008, 16:21
-
par L.A. » 07 Sep 2008, 09:44
Ouais ; et pour ça on se place sur des intervalles plus petits, et où elles prennent une forme plus simple.
Sans ça moi je vois pas comment faire :doh:
-
jawan
- Membre Naturel
- Messages: 37
- Enregistré le: 07 Sep 2008, 08:59
-
par jawan » 07 Sep 2008, 09:46
maintenant que j'ai le Df1 je fais les limites aux bords:
- l'infini
+l'infini
1 par valeur inf
1 par val sup
c'est ça ?
-
L.A.
- Membre Irrationnel
- Messages: 1709
- Enregistré le: 09 Aoû 2008, 16:21
-
par L.A. » 07 Sep 2008, 09:48
J'ai pas tout compris...
n'hésite pas à écrire lim qd x-> ... = ...
-
jawan
- Membre Naturel
- Messages: 37
- Enregistré le: 07 Sep 2008, 08:59
-
par jawan » 07 Sep 2008, 09:51
je dois réaliser une étude complète de la fonction
1) Df
2)comportement aux bords
3) continuité, dérivabilité
4) variations
5) tracé
nous avons fais la 1ere étape
maintenant je dois étudier le comportement aux bords de l'interval c'est à dire faire les limites en : +infini, -infini, 1< et 1>
c'est ça ?
-
L.A.
- Membre Irrationnel
- Messages: 1709
- Enregistré le: 09 Aoû 2008, 16:21
-
par L.A. » 07 Sep 2008, 09:56
:hum: bah oui mais qu'est-ce qu'elles valent alors ?
-
jawan
- Membre Naturel
- Messages: 37
- Enregistré le: 07 Sep 2008, 08:59
-
par jawan » 07 Sep 2008, 09:58
c'est dur, c'est dur...
j'y travaille mais ces foutues VA m'embèetent !!
-
L.A.
- Membre Irrationnel
- Messages: 1709
- Enregistré le: 09 Aoû 2008, 16:21
-
par L.A. » 07 Sep 2008, 10:00
jawan a écrit:c'est dur, c'est dur...
j'y travaille mais ces foutues VA m'embèetent !!
C'est pour ça... :mur: que je propose depuis le début de restreindre l'intervalle... :mur: pour les ELIMINER ! ! ! :mad2: :mad2: :mad2:
-
jawan
- Membre Naturel
- Messages: 37
- Enregistré le: 07 Sep 2008, 08:59
-
par jawan » 07 Sep 2008, 10:04
désolé, je ne connais pas cette technique ?
-
L.A.
- Membre Irrationnel
- Messages: 1709
- Enregistré le: 09 Aoû 2008, 16:21
-
par L.A. » 07 Sep 2008, 10:08
L.A. a écrit:exemple :
pour |2x+4|
si 2x+4 > 0 x > -2 alors |2x+4| = 2x+4
si 2x+4 x < -2 alors |2x+4| = -(2x+4)
déjà vu ça, non ?
si on se restreint à ]-inf,-2[, (par exemple,heu, pour étudier la limite en (-2)^-)
on peut remplacer |2x+4| par (2x+4)
et bling ! :we: plus de VA ! !
-
jawan
- Membre Naturel
- Messages: 37
- Enregistré le: 07 Sep 2008, 08:59
-
par jawan » 07 Sep 2008, 10:13
donc il conviendrait d'étudier sur
--> ]-inf;-1[
--> ]1; +inf[
???
-
L.A.
- Membre Irrationnel
- Messages: 1709
- Enregistré le: 09 Aoû 2008, 16:21
-
par L.A. » 07 Sep 2008, 10:16
jawan a écrit:donc il conviendrait d'étudier sur
--> ]-inf;1[
--> ]1; +inf[
???
:id: :id: ça c'est une sacrée trouvaille (sincèrement) :id: :id:
-
jawan
- Membre Naturel
- Messages: 37
- Enregistré le: 07 Sep 2008, 08:59
-
par jawan » 07 Sep 2008, 10:27
c'est vrai tu les penses ?
-
L.A.
- Membre Irrationnel
- Messages: 1709
- Enregistré le: 09 Aoû 2008, 16:21
-
par L.A. » 07 Sep 2008, 10:34
Je ne me permettrai jamais de mentir sur ce forum.
la restriction d'intervalle est LA SEULE manière de traiter une valeur absolue.
Utilisateurs parcourant ce forum : Aucun utilisateur enregistré et 84 invités