Puissance 3/2 ??

Réponses à toutes vos questions de la 2nde à la Terminale toutes séries
iuddknd
Messages: 7
Enregistré le: 30 Aoû 2015, 19:30

puissance 3/2 ??

par iuddknd » 30 Aoû 2015, 21:12

Bonsoir,

Je cherche à isoler z^2 dans :

Image

Je ne vois pas du tout comment gérer la puissance 3/2.

En effet, 3/2 = 3 * 1^2

Faut il que je distribu la puissance 3 et la racine carrée dans ma parenthèse ?

Cordialement,



Avatar de l’utilisateur
ampholyte
Membre Transcendant
Messages: 3940
Enregistré le: 21 Juil 2012, 07:03

par ampholyte » 30 Aoû 2015, 21:17

Bonjour,

Cela risque d'être un peu compliqué si tu veux développer.

Par contre ce que tu sais :



Il te suffit donc d'isoler le terme en (R² + z²)^(3/2) et d'appliquer à la puissance (2/3) l'ensemble de l'expression, tu n'auras plus qu'à soustraire par R² pour avoir exprimer z² en fonction du reste.

iuddknd
Messages: 7
Enregistré le: 30 Aoû 2015, 19:30

par iuddknd » 30 Aoû 2015, 21:32

ampholyte a écrit:Bonjour,

Cela risque d'être un peu compliqué si tu veux développer.

Par contre ce que tu sais :



Il te suffit donc d'isoler le terme en (R² + z²)^(3/2) et d'appliquer à la puissance (2/3) l'ensemble de l'expression, tu n'auras plus qu'à soustraire par R² pour avoir exprimer z² en fonction du reste.

Merci à toi ; comment l'idée d'utiliser t'es venu ?

Je n'arrivé jamais à trouver les bonnes techniques dans quelque chose d'un peu plus technique qu'un calcul trivial ....

Avatar de l’utilisateur
ampholyte
Membre Transcendant
Messages: 3940
Enregistré le: 21 Juil 2012, 07:03

par ampholyte » 30 Aoû 2015, 22:02

Bonjour,

Il faut penser à un exemple avec la racine carré. Soit a un réel quelconque alors :



La racine carré est en fait une puissance (1/2) ce qui "annule" la puissance de 2.

iuddknd
Messages: 7
Enregistré le: 30 Aoû 2015, 19:30

par iuddknd » 30 Aoû 2015, 22:46

ampholyte a écrit:Bonjour,

Il faut penser à un exemple avec la racine carré. Soit a un réel quelconque alors :



La racine carré est en fait une puissance (1/2) ce qui "annule" la puissance de 2.



euh pour tout a positif non ?

car pour tout a :

même si je trouve bizarre que "la racine carré est en fait une puissance (1/2)" car la multiplication est commutative sur R et

est différent de

Avatar de l’utilisateur
ampholyte
Membre Transcendant
Messages: 3940
Enregistré le: 21 Juil 2012, 07:03

par ampholyte » 30 Aoû 2015, 23:04

iuddknd a écrit:euh pour tout a positif non ?

car pour tout a :

même si je trouve bizarre que "la racine carré est en fait une puissance (1/2)" car la multiplication est commutative sur R et

est différent de


Oui tout à fait pour a un réel quelconque positif je pensais l'avoir précisé dans mon post précédent mais non désolé pour cela =).

Avatar de l’utilisateur
zygomatique
Habitué(e)
Messages: 6928
Enregistré le: 20 Mar 2014, 12:31

par zygomatique » 31 Aoû 2015, 17:18

iuddknd a écrit:Merci à toi ; comment l'idée d'utiliser t'es venu ?

Je n'arrivé jamais à trouver les bonnes techniques dans quelque chose d'un peu plus technique qu'un calcul trivial ....


salut

puisque pour tout réel x :: il suffit d'écrire pour tout réel non nul a

...

:ptdr:
Ce qui est affirmé sans preuve peut être nié sans preuve. EUCLIDE

tototo
Membre Rationnel
Messages: 954
Enregistré le: 08 Nov 2011, 07:41

par tototo » 31 Aoû 2015, 17:33

iuddknd a écrit:Bonsoir,

Je cherche à isoler z^2 dans :

Image

Je ne vois pas du tout comment gérer la puissance 3/2.

En effet, 3/2 = 3 * 1^2

Faut il que je distribu la puissance 3 et la racine carrée dans ma parenthèse ?

Cordialement,

Bonjour

On pourra multiplier par 2/3 puis multiplier le denominateur puis multiplier le denominateur par B afin d'isoler z.

Black Jack

par Black Jack » 01 Sep 2015, 11:59

(R²+z²)^(3/2) = µo.I.R²/(2B)

R²+z² = (µo.I.R²/(2B))^(2/3)

z² = (µo.I.R²/(2B))^(2/3) - R²

:zen:

 

Retourner vers ✎✎ Lycée

Qui est en ligne

Utilisateurs parcourant ce forum : Aucun utilisateur enregistré et 87 invités

Tu pars déja ?



Fais toi aider gratuitement sur Maths-forum !

Créé un compte en 1 minute et pose ta question dans le forum ;-)
Inscription gratuite

Identification

Pas encore inscrit ?

Ou identifiez-vous :

Inscription gratuite