Probabilité d'évènement indépendants

Réponses à toutes vos questions de la 2nde à la Terminale toutes séries
ptitejulye
Membre Naturel
Messages: 21
Enregistré le: 09 Fév 2008, 11:40

probabilité d'évènement indépendants

par ptitejulye » 05 Avr 2010, 12:24

Bonjour à tous j'ai fait la première partie de mon exercice mais je bloque à ce niveau :( merci d'avance )

2.Trois étudiants sont entrés en même temps et choisissent, de manière indépendante, des ouvrages.
On note X le nombre total de magazines qu'ils empruntent.
On suppose dans cette question que P(M)=0.34 ou M est l'évènement "il emprunte un magazine"

a.Déterminer la probabilité que les trois étudiants empruntent un magazine chacun. et la enfaite ce qui me pose problème c'est qu'on ne sait pas combien d'ouvrages il prennent sinon je ferai une liste de résultats P(M,.,.)+P(.,M,.)+P(.,.,M) OU il faudrait que je refasse un arbre mais je vois pas comment le faire.et forcément ça me bloque pour la suite

b.Quelle sont les valeurs possible de X ?
c.Déterminer la loi de probabilité de X.présenter sous forme d'un tableau
d.calculer l'espérance de cette loi.quelle interprétation peut-on en donner ?



ned aero
Membre Relatif
Messages: 387
Enregistré le: 16 Fév 2010, 20:30

par ned aero » 05 Avr 2010, 12:44

salut

tu parles d'ouvrages puis de magasines, est ce la même chose? c'est confus..

a) Déterminer la probabilité que les trois étudiants empruntent un magazine chacun

ce qui fait que je ne comprends pas ton blocage...sauf s'il nous manque des éléments existants dans la partie qu'on ne connait pas...

ned aero
Membre Relatif
Messages: 387
Enregistré le: 16 Fév 2010, 20:30

par ned aero » 05 Avr 2010, 12:49

salut,

il s'agit d'un schéma de Bernoulli car les évènements sont indépendants et répétitifs

c'est donc une loi binomiale de paramètres: 3 et 0,34

les étudiants empruntent un magasine chacun correspond à la proba:

0,34*0,34*0,34

 

Retourner vers ✎✎ Lycée

Qui est en ligne

Utilisateurs parcourant ce forum : Aucun utilisateur enregistré et 27 invités

Tu pars déja ?



Fais toi aider gratuitement sur Maths-forum !

Créé un compte en 1 minute et pose ta question dans le forum ;-)
Inscription gratuite

Identification

Pas encore inscrit ?

Ou identifiez-vous :

Inscription gratuite