Les triangles semblables (2ème)
Réponses à toutes vos questions de la 2nde à la Terminale toutes séries
-
Fabien33
- Membre Naturel
- Messages: 14
- Enregistré le: 05 Mai 2007, 09:19
-
par Fabien33 » 07 Mai 2007, 13:04
Bonjour à tous. J'ai un exercice à faire et je bloque sur la dernière question. Pourriez-vous m'aider?
ABC est un triangle, C son cercle circonscrit, de centre O et de rayon R. H est le pied de la hauteur issue de A, et D le point diamétralement opposé à A sur C.
On note S l'aire du triangle ABC.
1) Montrer que les triangles AHC et ABD sont semblables.
2) En déduire la relation ABxBCxCA=4RS
J'ai réussi à démontrer que les deux triangles étaient semblables mais je n'arrive pas à résoudre la deuxième question.
Merci d'avance pour votre aide.
-
oscar
- Membre Légendaire
- Messages: 10024
- Enregistré le: 17 Fév 2007, 20:58
-
par oscar » 07 Mai 2007, 13:57
Bonjour Cercle de centre O de rayon R circ tr ABC de hauteur AH
D diamétralement opposé à A sur C
S= AIRE tr ABC
DEMANDE 1) TR AHC et ABD semblables
2,AB*BC*CA=4RS
SOLUTION
1)tr rect atant un angle =(^ACb=ADB : 1/2 arc AB)
2)J arrive :ptdr:
-
oscar
- Membre Légendaire
- Messages: 10024
- Enregistré le: 17 Fév 2007, 20:58
-
par oscar » 07 Mai 2007, 14:28
Suite
On a démontré en trigo que S = 1/2 bc sinA et a/sin A= 2R(relation aux sinus:
a/sinA :bad: =b/sinB=.......2R)sin A = a/2R
Remplaçons ds S= 1/2 b c* a /2R= abc/4R
ou abc= 4RS
-
Fabien33
- Membre Naturel
- Messages: 14
- Enregistré le: 05 Mai 2007, 09:19
-
par Fabien33 » 07 Mai 2007, 14:34
Pouvez-vous m'expliquez un peu mieux la deuxième réponse en faisant des espaces dans les calculs car là je n'y comprends rien du tout. Merci d'avance.
-
oscar
- Membre Légendaire
- Messages: 10024
- Enregistré le: 17 Fév 2007, 20:58
-
par oscar » 07 Mai 2007, 14:40
Une remarque
En rapport avec la figure
S = 1/2 BC* AH = :happy2: 1/2 a *AH(1)
Or sin C = AH/AC ou AH = b sin C( => S= 1/2 ab sin C
Or sin C = c/2R
tu remplaces ds (1) S= 1/2 ab*c/2 R
On a donc S =abc/4R et abc = 4RS
-
oscar
- Membre Légendaire
- Messages: 10024
- Enregistré le: 17 Fév 2007, 20:58
-
par oscar » 07 Mai 2007, 14:49
Voici la figure

Utilisateurs parcourant ce forum : Aucun utilisateur enregistré et 55 invités