Droite concourante ou parallèle.

Réponses à toutes vos questions de la 2nde à la Terminale toutes séries
Tess27
Messages: 1
Enregistré le: 07 Nov 2012, 15:42

Droite concourante ou parallèle.

par Tess27 » 07 Nov 2012, 15:47

Bonjour à tous, j'espère que vous allez bien !
Merci à tout ceux qui auront la gentillesse (et la patience) de m'aider et de m'expliquer ce petit exercice.
J'ai bien compris l'enoncé mais je sais pas comment y répondre, oublie de méthode je pense .
Donc voilà :

Soit ABCD un parrallélograme et un point M du plan. La parallèle à la droite (AB) passant par le point M coupe les droites (AD) et (BC) respectivement en E et F.
La parallèle à la droite (BC) passant par le point M coupe les droites (AB) et (CD) respectivement en G et H. Lorsque les points E,F, G et H sont distincts des sommets du parallélogramme ABCD, montrer que les doirtes (AC), (EH) et (FG) sont concourantes ou parrallèles.

Je pense qu'elles sont concourantes mais comment le montrer ?

Je pense qu'il faut :
se placer dans un repère (A,vectAB,vectAD)
On détermine les coordonnées des points A, B , C et D dans ce repère.
On pose ensuite M de coordonnées (x;y).
On détermine les coordonnées de E, F, G et H, puis les équations cartésiennes des droites (AC) (FG) et (EH).

On calcule les coordonnées de l'intersection de deux de ces droites et enfin on vérifie que ce point appartient à la troisième droite.

Mais je suis bloqué à l'avant dernière étape, je ne sais pas comment déterminer E, F, G et H.

Pouvez vous m'aider ? Merci beaucoup ! Image



Avatar de l’utilisateur
chan79
Membre Légendaire
Messages: 10330
Enregistré le: 04 Mar 2007, 19:39

par chan79 » 07 Nov 2012, 16:41

Tess27 a écrit:Bonjour à tous, j'espère que vous allez bien !
Merci à tout ceux qui auront la gentillesse (et la patience) de m'aider et de m'expliquer ce petit exercice.
J'ai bien compris l'enoncé mais je sais pas comment y répondre, oublie de méthode je pense .
Donc voilà :

Soit ABCD un parrallélograme et un point M du plan. La parallèle à la droite (AB) passant par le point M coupe les droites (AD) et (BC) respectivement en E et F.
La parallèle à la droite (BC) passant par le point M coupe les droites (AB) et (CD) respectivement en G et H. Lorsque les points E,F, G et H sont distincts des sommets du parallélogramme ABCD, montrer que les doirtes (AC), (EH) et (FG) sont concourantes ou parrallèles.

Je pense qu'elles sont concourantes mais comment le montrer ?

Je pense qu'il faut :
se placer dans un repère (A,vectAB,vectAD)
On détermine les coordonnées des points A, B , C et D dans ce repère.
On pose ensuite M de coordonnées (x;y).
On détermine les coordonnées de E, F, G et H, puis les équations cartésiennes des droites (AC) (FG) et (EH).

On calcule les coordonnées de l'intersection de deux de ces droites et enfin on vérifie que ce point appartient à la troisième droite.

Mais je suis bloqué à l'avant dernière étape, je ne sais pas comment déterminer E, F, G et H.

Pouvez vous m'aider ? Merci beaucoup ! Image

sALUT
Tu devrais poser M(a;b)
Tu as
E(0:b)
F(1;b)
G(a,0)
H(a;1)
Tu cherches une équation de (FG)
tu peux trouver bx+(a-1)y=ab
tu cherches une équation de (EH)
etc
suis ton raisonnement

 

Retourner vers ✎✎ Lycée

Qui est en ligne

Utilisateurs parcourant ce forum : Aucun utilisateur enregistré et 25 invités

cron

Tu pars déja ?



Fais toi aider gratuitement sur Maths-forum !

Créé un compte en 1 minute et pose ta question dans le forum ;-)
Inscription gratuite

Identification

Pas encore inscrit ?

Ou identifiez-vous :

Inscription gratuite