Construire une rampe (Derivation)

Réponses à toutes vos questions de la 2nde à la Terminale toutes séries
Manny06
Membre Complexe
Messages: 2091
Enregistré le: 26 Jan 2012, 16:24

par Manny06 » 22 Fév 2012, 14:42

Chloeee a écrit:Ah d'accord donc en fait, pour la pente : f(x)=0 si x=0 et si x=2. Donc pour trouver le point du sommet de la pente, on doit faire (0+2)/2=1. Donc le maximum de la pente est bien atteint en 1 . C'est ça ? :)
Et ensuite je calcule f'(1)=-1, de valeur absolue 1 .
Merci beaucoup pour toutes tes explications !! :)

tu as f(x)=-0.5x²+1 sur [0;1]
donc f'(x)=-x sur [0;1] f'(x) decroit de 0 a -1 sur [0;1] le maximum de |f'(x)| est 1 obtenu pour x=1
tu as f(x)=0,5x²-2x+2 sur [1;2]
donc f'(x)=x-2 sur [1;2] f'(x) croit donc de -1 à 0 sur [1;2] le maximum de |f'(x)| est 1 obtenu pour x=1



Chloeee
Membre Naturel
Messages: 13
Enregistré le: 21 Fév 2012, 16:01

par Chloeee » 22 Fév 2012, 18:24

Manny06 a écrit:tu as f(x)=-0.5x²+1 sur [0;1]
donc f'(x)=-x sur [0;1] f'(x) decroit de 0 a -1 sur [0;1] le maximum de |f'(x)| est 1 obtenu pour x=1
tu as f(x)=0,5x²-2x+2 sur [1;2]
donc f'(x)=x-2 sur [1;2] f'(x) croit donc de -1 à 0 sur [1;2] le maximum de |f'(x)| est 1 obtenu pour x=1


Ok merci beaucoup, ensuite je dois faire f'(1)=-1
Et comme la valeur absolue de -1 vaut 1 : La pente vaut donc 1.

Ensuite pour la question 5, j'ai donc fait la forme canonique de f'(x):
On a : f(x)=0.75x^3-0.75x²+1
Donc f'(x)=0.75x²-1.5x
=0.75(x²-2x)
=0.75(x²-2x+1²-1²)
=0.75((x-1)²-1)
=0.75(x-1)²-0.75
Le sommet a donc pour coordonnées (1;-0.75).
La pente maximale est donc atteinte au point d'abcisse 1 et elle vaut 0.75 ( l-0.75l=0.75).
Merci beaucoup de votre aide !

Manny06
Membre Complexe
Messages: 2091
Enregistré le: 26 Jan 2012, 16:24

par Manny06 » 22 Fév 2012, 19:13

Chloeee a écrit:Ok merci beaucoup, ensuite je dois faire f'(1)=-1
Et comme la valeur absolue de -1 vaut 1 : La pente vaut donc 1.

Ensuite pour la question 5, j'ai donc fait la forme canonique de f'(x):
On a : f(x)=0.75x^3-0.75x²+1
Donc f'(x)=0.75x²-1.5x
=0.75(x²-2x)
=0.75(x²-2x+1²-1²)
=0.75((x-1)²-1)
=0.75(x-1)²-0.75
Le sommet a donc pour coordonnées (1;-0.75).
La pente maximale est donc atteinte au point d'abcisse 1 et elle vaut 0.75 ( l-0.75l=0.75).
Merci beaucoup de votre aide !

c'est bien,je crois que c'est terminé

Chloeee
Membre Naturel
Messages: 13
Enregistré le: 21 Fév 2012, 16:01

par Chloeee » 23 Fév 2012, 16:03

Manny06 a écrit:c'est bien,je crois que c'est terminé


Merci beaucoup pour votre aide, j'ai pu finir cet exercice !
:-)

texas-ti
Membre Naturel
Messages: 22
Enregistré le: 23 Fév 2012, 12:16

par texas-ti » 23 Fév 2012, 20:34

passés sur le topic:
expert en équation et fonction
svp

pierre14
Messages: 1
Enregistré le: 24 Fév 2012, 00:09

par pierre14 » 24 Fév 2012, 00:11

Manny06 a écrit:tu n'as pas bien lu le texte
l'equation est f(x)=ax³+bx²+cx+d
elle passe par B f(0)=..
la tangente en B est horizontale f'(0)=......
elle passe par A f(2)=......
la tangente en A est horizontale f'(2)=....
complète ces 4 équations
tu obtiendras un système pour determiner a,b,c,d


Bonjour, j'ai le meme exercice en DM a faire, pouvez vous juste aprofondire le systeme pour trouver a,b,c et d s'il vous plait ? merci beaucoup

micheal48
Messages: 4
Enregistré le: 24 Fév 2012, 16:10

par micheal48 » 24 Fév 2012, 16:12

Manny06 a écrit:tu n'as pas bien lu le texte
l'equation est f(x)=ax³+bx²+cx+d
elle passe par B f(0)=..
la tangente en B est horizontale f'(0)=......
elle passe par A f(2)=......
la tangente en A est horizontale f'(2)=....
complète ces 4 équations
tu obtiendras un système pour determiner a,b,c,d


Bonjour a tous,
j'aurais moi aussi besoin d’être un peu éclairci au sujet de ce système, :help: merci d'avance :we:

Dlzlogic
Membre Transcendant
Messages: 5273
Enregistré le: 14 Avr 2009, 13:39

par Dlzlogic » 24 Fév 2012, 16:22

micheal48 a écrit:Bonjour a tous,
j'aurais moi aussi besoin d’être un peu éclairci au sujet de ce système, :help: merci d'avance :we:

Qu'est-ce qui vous pose problème ?

micheal48
Messages: 4
Enregistré le: 24 Fév 2012, 16:10

par micheal48 » 24 Fév 2012, 16:29

Dlzlogic a écrit:Qu'est-ce qui vous pose problème ?


et bien en faite d'apres manny06 :
"elle passe par B f(0)=..
la tangente en B est horizontale f'(0)=......
elle passe par A f(2)=......
la tangente en A est horizontale f'(2)=...."
ce systeme nous aiderais pour trouver a, b, c et d dans l'equation f(x)=ax³+bx²+cx+d
mais j'ai beau poser ces 4 équation, apart trouver que d =1 je ne parvient pas a trouver :
a=0.25
b=-0.75
c=0 ../
:mur:

Dlzlogic
Membre Transcendant
Messages: 5273
Enregistré le: 14 Avr 2009, 13:39

par Dlzlogic » 24 Fév 2012, 16:38

micheal48 a écrit:et bien en faite d'apres manny06 :
"elle passe par B f(0)=..
la tangente en B est horizontale f'(0)=......
elle passe par A f(2)=......
la tangente en A est horizontale f'(2)=...."
ce systeme nous aiderais pour trouver a, b, c et d dans l'equation f(x)=ax³+bx²+cx+d
mais j'ai beau poser ces 4 équation, apart trouver que d =1 je ne parvient pas a trouver :
a=0.25
b=-0.75
c=0 ../
:mur:

Bon, il faut poser le problème. S'agit-il du problème initial ?
Quelles sont les 4 équations que vous avez trouvées ?
Avez-vous fait un dessin ?

micheal48
Messages: 4
Enregistré le: 24 Fév 2012, 16:10

par micheal48 » 24 Fév 2012, 17:18

Dlzlogic a écrit:Bon, il faut poser le problème. S'agit-il du problème initial ?
Quelles sont les 4 équations que vous avez trouvées ?
Avez-vous fait un dessin ?


oui c'est bien le problemme initial
j'ai reuissi a resoudre :
f(0) = 1 donc f(o) = 0a +0b +0c +d =1 donc d=1
puis f(2) = 0 donc f(2) = 8x 0.25 + 4x -0.75 + 2c + 1=o donc 2c =o donc c = 0
ensuite je sais que f'(2) = 0 et que f'(0) = 0
mais e n'arrive toujour pas a trouver a et b .. :help:

micheal48
Messages: 4
Enregistré le: 24 Fév 2012, 16:10

par micheal48 » 24 Fév 2012, 17:32

Dlzlogic a écrit:Bon, il faut poser le problème. S'agit-il du problème initial ?
Quelles sont les 4 équations que vous avez trouvées ?
Avez-vous fait un dessin ?

apres longues reflexions, j'ai reussi a trouver a et b , merci beaucoup pour votre aide !!!! :we: :ptdr:

 

Retourner vers ✎✎ Lycée

Qui est en ligne

Utilisateurs parcourant ce forum : Aucun utilisateur enregistré et 36 invités

Tu pars déja ?



Fais toi aider gratuitement sur Maths-forum !

Créé un compte en 1 minute et pose ta question dans le forum ;-)
Inscription gratuite

Identification

Pas encore inscrit ?

Ou identifiez-vous :

Inscription gratuite