Arithmetiques

Réponses à toutes vos questions de la 2nde à la Terminale toutes séries
Ismail
Membre Relatif
Messages: 147
Enregistré le: 08 Juin 2005, 00:12

arithmetiques

par Ismail » 23 Juin 2005, 13:02

a ,b et c sont des entiers naturels non nuls verifiant:abdemontrer que a+b= :confused:



S@m
Membre Irrationnel
Messages: 1107
Enregistré le: 18 Juin 2005, 20:42

par S@m » 23 Juin 2005, 13:55

Pour deux entiers naturels, si leur produit est inferieur a un troisieme entier alors leur somme l'est aussi mais je suis en train de chercher comment le prouver... :confused:

thomasg
Membre Relatif
Messages: 443
Enregistré le: 06 Mai 2005, 11:45

par thomasg » 23 Juin 2005, 15:17

On supposera a et b différents de 0.

étape préliminaire:
ab
preuve:
nous allons distinguer trois cas

1) a>c/2, on a alors b=1 donc a+b=a+1<=c
2) b>c/2, on a alors a=1 donc a+b=b+1<=c
3) a et b sont inférieurs ou égaux à c/2 alors a+b<=2*c/2=c

Relis ma preuve en détail, mais cela semble correct.

au revoir.

Ismail
Membre Relatif
Messages: 147
Enregistré le: 08 Juin 2005, 00:12

par Ismail » 23 Juin 2005, 15:23

on note a=x+1 b=y+1 c=z+1
puisque a b et c ne sont pas nuls ,x y et z appartiennent à IN (et peuvent etre nuls)
ab=(x+1)(y+1)=xy+x+y+1 c evident que -xy<=0
en faisant la somme on obtient: x+y+1puisqu'on travaille dans IN on peut ajouter 1 au coté gauche sans oublier d'ajouter le signe "=" sous <
x+y+1+1<=z+1
(x+1)+(y+1)<=z+1
a + b <=c
:p

thomasg
Membre Relatif
Messages: 443
Enregistré le: 06 Mai 2005, 11:45

par thomasg » 23 Juin 2005, 15:49

ma preuve semble valable (le cas de nullité est trivial)
pourquoi pose-tu des questions dont tu as la réponse sur ce site d'aide en ligne ?
On perd alors un peu notre temps.

Ismail
Membre Relatif
Messages: 147
Enregistré le: 08 Juin 2005, 00:12

par Ismail » 23 Juin 2005, 16:31

c parfois tres utile davoir d'autres methodes pour enrichir sa technique :p

thomasg
Membre Relatif
Messages: 443
Enregistré le: 06 Mai 2005, 11:45

par thomasg » 23 Juin 2005, 16:54

mes excuses pour ma réponse précédente (j'ai été dans un premier temps un peu agacé)

à bientôt, au revoir.

Anonyme

par Anonyme » 23 Juin 2005, 18:02

Ismail a écrit:c parfois tres utile davoir d'autres methodes pour enrichir sa technique :p

tres juste

cesar
Membre Rationnel
Messages: 841
Enregistré le: 05 Juin 2005, 09:12

par cesar » 23 Juin 2005, 18:06

[quote="Ismail"]on note a=x+1 b=y+1 c=z+1
puisque a b et c ne sont pas nuls ,x y et z appartiennent à IN (et peuvent etre nuls)
ab=(x+1)(y+1)=xy+x+y+1=0 et ab<c

suite à la remarque de leibniz : pour les reels on prendra plutot ab+1=<c comme condition à la place de ab<c. C'est cette condition qu'implique le fait d'être entier et qu'il est necessaire de rajouter pour les reels..

leibniz
Membre Relatif
Messages: 406
Enregistré le: 30 Mai 2005, 12:00

par leibniz » 23 Juin 2005, 18:22

cesar a écrit:cela marche même si a et b sont reels, la seule condition à respecter est xy>=0 et ab<c

Je crois que c'est pas vrai, car il a utilisé le fait que x et y sont des entiers naturels ici:
"puisqu'on travaille dans IN on peut ajouter 1 au coté gauche sans oublier d'ajouter le signe "=" sous < "

leibniz
Membre Relatif
Messages: 406
Enregistré le: 30 Mai 2005, 12:00

par leibniz » 23 Juin 2005, 18:39

Salut, voici une autre méthode:
*On suppose que b>=2 et a>=2: (on peut traiter le cas: b=1 ou a=1)
On sait que: a+b>c => a>c/2 ou b>c/2.
on suppose que: a>c/2 => ab>cb/2
D'un autre côté: cb/2-c=c(b/2-1)>=0 (puisque b>=2)
Alors: ab>=c
a et b jouent le même role.
C'est un peu compliqué mais je crois que c'est juste :)

thomasg
Membre Relatif
Messages: 443
Enregistré le: 06 Mai 2005, 11:45

par thomasg » 23 Juin 2005, 22:35

je confirme la remarque de Leibniz

Contre exemple:
a=2c ; b=1/4 ; c>0
donc a*b=c/2et a+b>c

Dans la démo que j'ai proposée l'utilisation du fait que ce sont 3 entiers est nécessaire.

Au revoir.

Ismail
Membre Relatif
Messages: 147
Enregistré le: 08 Juin 2005, 00:12

par Ismail » 23 Juin 2005, 23:35

[quote="cesar"]cela marche même si a et b sont reels, la seule condition à respecter est xy>=0 et ab2.5 :o

evilangelium
Membre Naturel
Messages: 75
Enregistré le: 01 Mai 2005, 03:14

par evilangelium » 01 Juil 2005, 11:47

bonjour

j'ai peut-être une solution plus simple et plus élégante

après quelques tentatives, on voit qu'il faut s'intéresser au produit

(a-1)(b-1) = a*b - a - b + 1
<=> ab + 1 = a + b + (a-1)(b-1)

on sait que ab < c
et comme on travaille dans N, ab + 1 <= c

soit a + b + (a-1)(b-1) <= c
le produit (a-1)(b-1) est positif ou nul sauf si a=0 ou b=0
et donc
a + b <= c

Ismail
Membre Relatif
Messages: 147
Enregistré le: 08 Juin 2005, 00:12

par Ismail » 01 Juil 2005, 11:59

flct
ta methode est plus simple que toute ,BRAVO

lasaid
Membre Naturel
Messages: 82
Enregistré le: 28 Juin 2005, 15:18

par lasaid » 01 Juil 2005, 15:45

démonstration par l'absurde
supposons que a+b est supérieur strictement à c .on a ab est inférieur à c donc a+b/ab est supérieur à 1 ça veut dire 1/a +1/b est supérieur à 1.
DEUX CAS
1°si a ou b sont supérieur à 2 donc c'est impossible et donc notre hypothése est fausse a+b est donc inférieur à c
2°si a et b sont inférieur à 2 donc
-ab est égal à 2 et a+b=3 dans ce cas c supérieur strictement à 2 et puisqu'il appartient à N DONC C est supérieur ou égal 3 donc a+b=3 est inférieur ou égal c :o
-ab est égal à 1 et a+b=2 dans ce cas c supérieur strictement à 1 et puisqu'il appartient à N DONC C est supérieur ou égal 2 donc a+b=2 est inférieur ou égal c :o

 

Retourner vers ✎✎ Lycée

Qui est en ligne

Utilisateurs parcourant ce forum : Aucun utilisateur enregistré et 88 invités

Tu pars déja ?



Fais toi aider gratuitement sur Maths-forum !

Créé un compte en 1 minute et pose ta question dans le forum ;-)
Inscription gratuite

Identification

Pas encore inscrit ?

Ou identifiez-vous :

Inscription gratuite