DM de maths 3ème sur " programme de calcul "

Réponses à toutes vos questions du CP à la 3ème
Manondu42
Membre Naturel
Messages: 36
Enregistré le: 01 Nov 2010, 18:16

DM de maths 3ème sur " programme de calcul "

par Manondu42 » 11 Déc 2010, 22:21

Bonjour, je suis en 3ème et je bloque sur deux question ( la "c" et la "d" )

Voici l'énoncé :

Programme de calcul :
- Choisir un nombre
- Lui ajouter 4
- Multiplier la somme obtenue par le nombre choisi
- Ajouter 4 à ce produit

a) Ecrire les calculs permettant de vérifier que si l'on fait fonctionner ce programme avec le nombre -2, on obtient 0

b) Faire deux autres essais en choisissant à chaque fois un nombre entier et écrire le résultat sous la forme du carré d'un autre nombre entier

c) En est t-il toujours ainsi lorsqu'on choisit un nombre entier au départ de ce programme ? Justifie

d) 0n souhaite obtenir 1 comme résultat. QuelS nombreS peut-on choisir au départ ?

> Pour la question C je pense que la réponse est oui mais je ne sais pas comment justifier.
> Pour la question D j'ai trouvée -1 et je me demande s'il n'y a pas d'autres réponses.

Merci de m'aider au plus vite



nee-san
Membre Irrationnel
Messages: 1220
Enregistré le: 04 Sep 2010, 22:23

par nee-san » 11 Déc 2010, 22:35

Manondu42 a écrit:Bonjour, je suis en 3ème et je bloque sur deux question ( la "c" et la "d" )

Voici l'énoncé :

Programme de calcul :
- Choisir un nombre
- Lui ajouter 4
- Multiplier la somme obtenue par le nombre choisi
- Ajouter 4 à ce produit

a) Ecrire les calculs permettant de vérifier que si l'on fait fonctionner ce programme avec le nombre -2, on obtient 0

b) Faire deux autres essais en choisissant à chaque fois un nombre entier et écrire le résultat sous la forme du carré d'un autre nombre entier

c) En est t-il toujours ainsi lorsqu'on choisit un nombre entier au départ de ce programme ? Justifie

d) 0n souhaite obtenir 1 comme résultat. QuelS nombreS peut-on choisir au départ ?

> Pour la question C je pense que la réponse est oui mais je ne sais pas comment justifier.
> Pour la question D j'ai trouvée -1 et je me demande s'il n'y a pas d'autres réponses.

Merci de m'aider au plus vite

ba deja pour la c exprime en fonction de x le programme, c'est a dire pard de x et exprime le programme
pour la d ca reviendera a resoudre une equation

Avatar de l’utilisateur
Lostounet
Admin
Messages: 9473
Enregistré le: 16 Mai 2009, 13:00

par Lostounet » 11 Déc 2010, 22:54

Il te suffit de montrer qu'on a affaire à un carré parfait!
Développe l'expression du programme et factorise là selon une identité remarquable.
Merci de ne pas m'envoyer de messages privés pour répondre à des questions mathématiques ou pour supprimer votre compte.

Manondu42
Membre Naturel
Messages: 36
Enregistré le: 01 Nov 2010, 18:16

par Manondu42 » 12 Déc 2010, 13:12

D'accord. Merci beaucoup :)

Manondu42
Membre Naturel
Messages: 36
Enregistré le: 01 Nov 2010, 18:16

par Manondu42 » 12 Déc 2010, 13:20

J'ai fait comme vous m'avez dit, j'ai developper avec x cela m'as donné : x² + 8x + 16
Ensuite j'ai factorisée avec une identité remarquable : x² + 8x + 16 = (x + 4) ²
Es-ce bon ?

nee-san
Membre Irrationnel
Messages: 1220
Enregistré le: 04 Sep 2010, 22:23

par nee-san » 12 Déc 2010, 13:54

Manondu42 a écrit:J'ai fait comme vous m'avez dit, j'ai developper avec x cela m'as donné : x² + 8x + 16
Ensuite j'ai factorisée avec une identité remarquable : x² + 8x + 16 = (x + 4) ²
Es-ce bon ?

refais depuis le deput stp

Manondu42
Membre Naturel
Messages: 36
Enregistré le: 01 Nov 2010, 18:16

par Manondu42 » 12 Déc 2010, 15:35

Nombre choisit : x
x + 4
x + 4 fois x
(x + 4)fois (x + 4)
x² + 4x + 4x + 16
x² + 8x + 16

x² + 8x + 16
= ( x + 4 )²

C'est bon ??

nee-san
Membre Irrationnel
Messages: 1220
Enregistré le: 04 Sep 2010, 22:23

par nee-san » 12 Déc 2010, 16:43

Manondu42 a écrit:Nombre choisit : x
x + 4
x + 4 fois x
(x + 4)fois (x + 4)
x² + 4x + 4x + 16
x² + 8x + 16

x² + 8x + 16
= ( x + 4 )²

C'est bon ??

faux car pourquoi tu multiplie par 4+x alors que c'est demander de multiplier par le nombre de depart soit

Manondu42
Membre Naturel
Messages: 36
Enregistré le: 01 Nov 2010, 18:16

par Manondu42 » 12 Déc 2010, 17:22

Non je multiplie par x et ensuite je fais +4 comme demandé à la fin

nee-san
Membre Irrationnel
Messages: 1220
Enregistré le: 04 Sep 2010, 22:23

par nee-san » 12 Déc 2010, 18:43

ba taa x
on fait+4
x+4
on multiplie par x donc distribut et tu ajoure 4

Manondu42
Membre Naturel
Messages: 36
Enregistré le: 01 Nov 2010, 18:16

par Manondu42 » 12 Déc 2010, 19:02

Donc : x +4
x ( x + 4 )
x² + 4x
x² + 4x + 4

C'est bon ?

nee-san
Membre Irrationnel
Messages: 1220
Enregistré le: 04 Sep 2010, 22:23

par nee-san » 12 Déc 2010, 19:13

Manondu42 a écrit:Donc : x +4
x ( x + 4 )
x² + 4x
x² + 4x + 4

C'est bon ?

et si tu factorise deja pour avoir un car&e parfait
pour la deux tu resous une equation

Manondu42
Membre Naturel
Messages: 36
Enregistré le: 01 Nov 2010, 18:16

par Manondu42 » 12 Déc 2010, 19:26

Si je factorise comme ça c'est bon ?

x² + 4x +4
= (x + 2)²

???

Pour la dernière question je ne sais absolument pas comment faire je viens juste de commencer les équations alors je ne comprends pas très bien

nee-san
Membre Irrationnel
Messages: 1220
Enregistré le: 04 Sep 2010, 22:23

par nee-san » 12 Déc 2010, 19:28

Manondu42 a écrit:Si je factorise comme ça c'est bon ?

x² + 4x +4
= (x + 2)²

???

Pour la dernière question je ne sais absolument pas comment faire je viens juste de commencer les équations alors je ne comprends pas très bien

ba l'équation c'est (x+2)²=1
fait passer le 1 a gauche et tu reconnaitra une identité remarquable pour facto et apres c'est simple

Manondu42
Membre Naturel
Messages: 36
Enregistré le: 01 Nov 2010, 18:16

par Manondu42 » 12 Déc 2010, 19:43

J'ai beau réfléchir je n'y arrive pas ! ^^

Parce que vous m'avez dit de mettre le 1 à gauche sauf que je ne sais pas si je dois développer ou laisser comme et le placer où exactement

Georges Leroy
Membre Relatif
Messages: 112
Enregistré le: 28 Oct 2009, 16:32

par Georges Leroy » 12 Déc 2010, 19:45

Manondu42 a écrit:J'ai beau réfléchir je n'y arrive pas ! ^^

Parce que vous m'avez dit de mettre le 1 à gauche sauf que je ne sais pas si je dois développer ou laisser comme et le placer où exactement


Bonsoir,

Il t'a été dit qu'il te fallait passer le 1 à gauche
Donc (x+2)²-1 = 0
Je te rappel que 1 = 1² = V1 (racine carrée de 1)

nee-san
Membre Irrationnel
Messages: 1220
Enregistré le: 04 Sep 2010, 22:23

par nee-san » 12 Déc 2010, 19:51

Manondu42 a écrit:J'ai beau réfléchir je n'y arrive pas ! ^^

Parce que vous m'avez dit de mettre le 1 à gauche sauf que je ne sais pas si je dois développer ou laisser comme et le placer où exactement

ba tu aura (x+2)²-1=0
ca te fait pas penser à une identité remarquable ca ou l'on a la différence de deux carré

Manondu42
Membre Naturel
Messages: 36
Enregistré le: 01 Nov 2010, 18:16

par Manondu42 » 12 Déc 2010, 19:56

Ah je pense avoir compris :

(x+2)² + 1² = 0
[(x+2) + 1] [(x+2) - 1] = 0
(x+3)(x+1) = 0

(x+3) = 0 ou (x+1) = 0

C'est bon ? Dois je continuer si j'ai juste ?

nee-san
Membre Irrationnel
Messages: 1220
Enregistré le: 04 Sep 2010, 22:23

par nee-san » 12 Déc 2010, 19:57

Manondu42 a écrit:Ah je pense avoir compris :

(x+2)² + 1² = 0
[(x+2) + 1] [(x+2) - 1] = 0
(x+3)(x+1) = 0

(x+3) = 0 ou (x+1) = 0

C'est bon ? Dois je continuer si j'ai juste ?

la ligne en rouge est fausse

Manondu42
Membre Naturel
Messages: 36
Enregistré le: 01 Nov 2010, 18:16

par Manondu42 » 12 Déc 2010, 19:59

J'arrive pas a voir mon erreur :/ Peut être le 1² est en trop ?? Mais il ne me semble pas car 1² = 1 ou alors ce n'est pas +1 mais -1

 

Retourner vers ✎ Collège et Primaire

Qui est en ligne

Utilisateurs parcourant ce forum : Aucun utilisateur enregistré et 4 invités

Tu pars déja ?



Fais toi aider gratuitement sur Maths-forum !

Créé un compte en 1 minute et pose ta question dans le forum ;-)
Inscription gratuite

Identification

Pas encore inscrit ?

Ou identifiez-vous :

Inscription gratuite