Petite question de proba

Réponses à toutes vos questions de la 2nde à la Terminale toutes séries
aeris
Membre Naturel
Messages: 92
Enregistré le: 10 Jan 2013, 14:53

petite question de proba

par aeris » 13 Jan 2014, 23:51

Bonsoir, j'ai besoin d'aide sur une petite question de proba, je n'arrive pas à m'en sortir...

Énoncé :

On dispose de deux dés cubiques, un de couleur blanche noté B et un autre de couleur rouge noté R. Pour chacun d'entre d'eux, les six faces numérotées de 1 à 6 ont la même probabilité d'apparition quand on les lance.
On fait un lancer simultané des deux dés et on note b résultat du dé B et r du dé R.
Soit l'événement suivant S : " l'un au moins des 2 résultats est le nombre 5 et b<=r (supérieur ou égal)"

Démontrer que P(S)=1/6

Merci de m'aider je n'y arrive plus du tout... c'est la seule question d'un devoir qui me pose problème, les autres, loi binomiale, poisson, facile, mais celle-ci... :mur:



mathsoutien78
Membre Relatif
Messages: 105
Enregistré le: 04 Jan 2014, 15:25

par mathsoutien78 » 14 Jan 2014, 00:00

aeris a écrit:Bonsoir, j'ai besoin d'aide sur une petite question de proba, je n'arrive pas à m'en sortir...

Énoncé :

On dispose de deux dés cubiques, un de couleur blanche noté B et un autre de couleur rouge noté R. Pour chacun d'entre d'eux, les six faces numérotées de 1 à 6 ont la même probabilité d'apparition quand on les lance.
On fait un lancer simultané des deux dés et on note b résultat du dé B et r du dé R.
Soit l'événement suivant S : " l'un au moins des 2 résultats est le nombre 5 et b<=r (supérieur ou égal)"

Démontrer que P(S)=1/6

Merci de m'aider je n'y arrive plus du tout... c'est la seule question d'un devoir qui me pose problème, les autres, loi binomiale, poisson, facile, mais celle-ci... :mur:


vu l'heure je ne le démontrerais pas mais c'est logique. cela revient a lancer un dé de 12 faces notées de 1 à 6 (chaque chiffre étant répété 2 fois).

la proba de chaque face est de 1/12 mais la proba de tomber sur un chiffre particulier est de 2 fois 1/12 donc 1/6

beagle
Habitué(e)
Messages: 8746
Enregistré le: 08 Sep 2009, 14:14

par beagle » 14 Jan 2014, 00:17

b=5 1/6, et b inf égal r c'est r=5 ou 6, donc 2/6 donc on a ici :1/6 x 2/6

b= 1 à 4 et alors r= 5, c'est 4/6 x 1/6

b=6 et r= 5 marche pas

Le P(S)= 1/6 x (2/6 + 4/6)

et l'umP?
L'important est de savoir quoi faire lorsqu'il n' y a rien à faire.

aeris
Membre Naturel
Messages: 92
Enregistré le: 10 Jan 2013, 14:53

par aeris » 14 Jan 2014, 00:29

beagle a écrit:b=5 1/6, et b inf égal r c'est r=5 ou 6, donc 2/6 donc on a ici :1/6 x 2/6

b= 1 à 4 et alors r= 5, c'est 4/6 x 1/6

b=6 et r= 5 marche pas

Le P(S)= 1/6 x (2/6 + 4/6)

et l'umP?


En fait j'ai éssayé de décomposer la question en deux :
- chercher la probabilité d'avoir au moins un 5 (donc une ou deux fois) mais il y a plein de possibilité 5 et 1, 5 et 2, ..., 5 et 5, 5 et 6.
- et d'avoir b inférieur ou égal à r, pareil il y a plein de solution, pour r = 1 : b = 1 ; pour r = 2 : b = 1 ou 2 ; ... pour r = 6 : b = 1 ou 2 ou 3 ou 4 ou 5 ou 6 ...
et de faire inter des deux solutions, mais je m'y suis perdue

J; n'y a pas de combinaison ? je partais là dessus au départ...

ET L'UMP ? je ne vois pas de quoi vous parlez ?

mathsoutien78
Membre Relatif
Messages: 105
Enregistré le: 04 Jan 2014, 15:25

par mathsoutien78 » 14 Jan 2014, 00:31

je n'ai pas lu "et b<=r (supérieur ou égal)" donc je ne l'avais pas pris en compte

sorry

aeris
Membre Naturel
Messages: 92
Enregistré le: 10 Jan 2013, 14:53

par aeris » 14 Jan 2014, 00:35

mathsoutien78 a écrit:je n'ai pas lu "et b<=r (supérieur ou égal)" donc je ne l'avais pas pris en compte

sorry


en plus je me suis trompée c'est INFérieur ou égale, le signe est bon mais pas le mot... (l'heure aussi... j'ai passé une bonne partie de ma soirée dessus)

mathsoutien78
Membre Relatif
Messages: 105
Enregistré le: 04 Jan 2014, 15:25

par mathsoutien78 » 14 Jan 2014, 12:11

aeris a écrit:en plus je me suis trompée c'est INFérieur ou égale, le signe est bon mais pas le mot... (l'heure aussi... j'ai passé une bonne partie de ma soirée dessus)


Bonjour,

je gagne si :

b 5 - r 5
b 5 - r 6 ==> soit 1/6 * 2/6

r 5 - b 1
r 5 - b 2
r 5 - b 3
r 5 - b 4
r 5 - b 5 => soit 1/6 * 5/6

mais je compte 2 fois b 5 - r 5 donc -(1/6*1/6)

en final : 2/36 + 5/36 -1/36 = 6/36 = 1/6

Avatar de l’utilisateur
chan79
Membre Légendaire
Messages: 10330
Enregistré le: 04 Mar 2007, 19:39

par chan79 » 14 Jan 2014, 12:50

Salut
Les cas favorables pour (b,r) ne sont pas nombreux:
(1,5)
(2,5)
(3,5)
(4,5)
(5,5)
(5,6)
donc il faut faire 6/36=1/6

 

Retourner vers ✎✎ Lycée

Qui est en ligne

Utilisateurs parcourant ce forum : Aucun utilisateur enregistré et 53 invités

Tu pars déja ?



Fais toi aider gratuitement sur Maths-forum !

Créé un compte en 1 minute et pose ta question dans le forum ;-)
Inscription gratuite

Identification

Pas encore inscrit ?

Ou identifiez-vous :

Inscription gratuite