Résoudre des problèmes...
Réponses à toutes vos questions du CP à la 3ème
-
Walifan
- Membre Relatif
- Messages: 118
- Enregistré le: 15 Mar 2006, 15:27
-
par Walifan » 15 Mar 2006, 15:33
Salut !
Je bloque sur un exo où il faut résoudre un problème sous forme d'équation... (Niveau 3e)
Voici l'énoncé> Si, au produit de trois nombres entiers consécutifs, on ajoute le nombre du "milieu", alors on trouve comme résultat le cube du nombre du "milieu". Est-ce toujours vrai?
Alors comme inconnue j'ai trouvé (a confirmer)
>Le nombre: X
>1er nombre consécutif: X+1
>2e nombre consécutif: X+2
Et comme mise en équation j'ai ceci (a confirmer aussi)
>x.(x+1).(x+2)+x+1=(x+1)^3
Cela est-il juste? Si non, pouvez m'aider à le corriger?
Merci d'avance,
ciao !
-
Anonyme
par Anonyme » 15 Mar 2006, 15:44
bonjour
c'est bon !! maintenant , il te suffit de développer chaque côté pour vérifier si c'est toujours vrai ou non .
-
Walifan
- Membre Relatif
- Messages: 118
- Enregistré le: 15 Mar 2006, 15:27
-
par Walifan » 15 Mar 2006, 16:16
salut et merci de m'avoir répondu! :D
Comment fais-tu pour développer (x+1)^3 stp?
merci d'avance,
ciao
-
Anonyme
par Anonyme » 15 Mar 2006, 16:24
tu développes d'abord (x+1)^2 puis tu le multiplies à (x+1) !
-
Walifan
- Membre Relatif
- Messages: 118
- Enregistré le: 15 Mar 2006, 15:27
-
par Walifan » 15 Mar 2006, 17:25
Merci beaucoup à toi!
-
yvelines78
- Membre Légendaire
- Messages: 6903
- Enregistré le: 15 Fév 2006, 21:14
-
par yvelines78 » 16 Mar 2006, 00:02
bonjour,
si je choisis pour 3 nombres entiers consécutifs
(x-1); x; (x+1) le calcul est beaucoup plus rapide
(x-1)(x)(x+1) + x = (x²-1)x + x =x^3 -x + x =x^3
Utilisateurs parcourant ce forum : Aucun utilisateur enregistré et 14 invités