Périodicité et partie entière

Réponses à toutes vos questions après le Bac (Fac, Prépa, etc.)
Eti_N
Messages: 9
Enregistré le: 11 Nov 2008, 16:32

Périodicité et partie entière

par Eti_N » 26 Aoû 2010, 12:38

Bonjour,

J'ai une petite lacune qui me gène : une fonction peut-elle être mutli-périodique ? (par exemple de période T1 ET de période T2)

A propos de la fonction partie entière :
on a bien E(x+1) = E(x) + 1, (x étant réel) mais n'a-t-on pas pour tout n entier relatif : E(x+n) = E(x) + n ?

Merci d'avance.



MacManus
Membre Irrationnel
Messages: 1365
Enregistré le: 28 Avr 2008, 16:41

par MacManus » 26 Aoû 2010, 13:18

Bonjour.

Pour ta première question : http://fr.wikipedia.org/wiki/Fonction_p%C3%A9riodique (dernier paragraphe)

La fonction partie entière n'est pas périodique !
Ce que tu écris est vrai, mais n'est pas la définition d'une fonction périodique.

Le_chat
Membre Rationnel
Messages: 938
Enregistré le: 10 Juin 2009, 14:59

par Le_chat » 26 Aoû 2010, 13:37

Eti_N a écrit:
J'ai une petite lacune qui me gène : une fonction peut-elle être mutli-périodique ? (par exemple de période T1 ET de période T2)


En fait toute fonction périodique est, pour reprendre tes termes, "multiperiodique", vu que si T1 est une période, alors 2*T1 aussi, 3*T1 de même etc..

Eti_N
Messages: 9
Enregistré le: 11 Nov 2008, 16:32

par Eti_N » 26 Aoû 2010, 13:47

Merci pour vos réponses !
Donc un fonction périodique de période 1 est également périodique de période n ? (n entier relatif)

MacManus
Membre Irrationnel
Messages: 1365
Enregistré le: 28 Avr 2008, 16:41

par MacManus » 26 Aoû 2010, 16:04

Si une fonction est périodique de période T, alors elle est périodique pour tous multiples de T (cad pour les kT avec k dans N). Comme te l'as dit Le_chat finalement.

Pour répondre à ta question :

Si l'on suppose la fonction f 1-périodique, alors pour tout x réel :
f(x+1)=f(x).
f((x+1)+1)=f(x+1)=f(x+2)=f(x)
f(((x+1)+1)+1)=f((x+1)+1)=f(x+1)=f(x+2)=f(x+3)=f(x)
.
.
.
f(x+n*1)=f(x+n)=f(x)
On peut le montrer rigoureusement par récurrence.
donc oui. (n est un entier naturel!)

 

Retourner vers ✯✎ Supérieur

Qui est en ligne

Utilisateurs parcourant ce forum : Aucun utilisateur enregistré et 51 invités

Tu pars déja ?



Fais toi aider gratuitement sur Maths-forum !

Créé un compte en 1 minute et pose ta question dans le forum ;-)
Inscription gratuite

Identification

Pas encore inscrit ?

Ou identifiez-vous :

Inscription gratuite