Fonction generatrice des moments

Réponses à toutes vos questions après le Bac (Fac, Prépa, etc.)
Louise2607
Membre Naturel
Messages: 54
Enregistré le: 27 Aoû 2008, 10:34

Fonction generatrice des moments

par Louise2607 » 24 Sep 2010, 18:48

Bonjour ,
J ai un probleme concernant un exercice :
On considere trois variables independantes X1 , X2 et X3 .
On definit Y1=X1+X2 et Y2=X2+X3

Il s agit de trouver la fonction jointe generatrice des moment de (Y1,Y2)
dans les 2 cas suivants : a/Xi suit une loi de poisson de parametre de mu(i) ; b/Xi suit une normale (mu(i),sigma(i)^2)

a/ jai montre aue Y1 suit une poisson (mu(1)+mu(2)) et Y2 suit une poisson (mu(2)+-mu(3))
b/ Dans ce cas Y1 suit une normale (mu(1)+mu(2),sigma(1)^2+sigma(2)^2)et Y2 (mu(3)+mu(2),sigma(3)^2+sigma(2)^2)

Mais pour avoir la FGM jointe il faudrait montrer que Y1 et Y2 sont independantes ??? Et je ne vois pas comment faire ? Ou alors trouver la densite du couple, et la cela devient compliauer surtout avec les lois de Poisson

Merci d avance de votre aide



MathMoiCa
Membre Rationnel
Messages: 518
Enregistré le: 20 Jan 2008, 12:57

par MathMoiCa » 25 Sep 2010, 10:08

Salut,

Faut savoir quelle est la fgm d'un couple :

, où et

Donc en développant le produit scalaire, on obtient

En utilisant les définitions de , tu obtiendras l'espérance de produits d'exponentielles que tu pourras séparer puisque X1,X2 et X3 sont indépendantes ;)


M.

 

Retourner vers ✯✎ Supérieur

Qui est en ligne

Utilisateurs parcourant ce forum : Aucun utilisateur enregistré et 62 invités

Tu pars déja ?



Fais toi aider gratuitement sur Maths-forum !

Créé un compte en 1 minute et pose ta question dans le forum ;-)
Inscription gratuite

Identification

Pas encore inscrit ?

Ou identifiez-vous :

Inscription gratuite