Algebre lineaire rappel

Réponses à toutes vos questions après le Bac (Fac, Prépa, etc.)
guio
Membre Naturel
Messages: 77
Enregistré le: 15 Oct 2006, 16:33

algebre lineaire rappel

par guio » 18 Sep 2007, 14:40

bonjours tout le monde

voila la rentre a commence et j'ai des petits oublies pour resoudre cette exo.

soit E l'ensemble des polynomes de degré inferieur ou egal a deux et a coeff reels.

donc on a montrer que E est un e.v

l'ensemble F des applications affines et l'ensemble G des polynomes tels que
P(1)=1 sont-ils des s.e.v de E ?

ca c fait !

ensuite
soit f,g,h les applications

f: E -> E g: F-> E h:F-> E
P -> P' P -> (x+1)P P -> P²

ces applications sont-elles lineaires?si oui quel est leur noyau ? leur image?

ca c bon sauf pour les images de f et g (car h n'est pas lineaire !)
pour f j'ai:
pour g j'ai pareil en changeant ce qu'il faut (cad E et F ) mais bon

le plus important ==>

verifier que est une base de E, et a partir de ces vecteurs constituer une base de F.ecrire les matrices A et B representant respectivement f et g dans les bases .

merci de bien vouloirs m'indique la marche a suivre. :mur:



fahr451
Membre Transcendant
Messages: 5142
Enregistré le: 05 Déc 2006, 23:50

par fahr451 » 18 Sep 2007, 18:20

[quote="guio"]
pour f j'ai:
QUOTE]


bonsoir en écrivant ça tu ne fais rien de plus que dire que l image est l'image

il faut expliquer CONCRETEMENT ici ce que représente l 'image

reconnaitre ce sev

guio
Membre Naturel
Messages: 77
Enregistré le: 15 Oct 2006, 16:33

par guio » 18 Sep 2007, 21:15

oui je sais mais le probleme c'est que je ne voit pas ou est ce que la definition va me mener dans mon exercice.c'est surtout pour cela que je demande de l'aide.on ma dit qu'il fallait faire une double inclusion mais j'y comprend rien.
la double inclusion c'est et

fahr451
Membre Transcendant
Messages: 5142
Enregistré le: 05 Déc 2006, 23:50

par fahr451 » 18 Sep 2007, 21:18

la dérivée d un polynôme de degré au plus deux est ?

 

Retourner vers ✯✎ Supérieur

Qui est en ligne

Utilisateurs parcourant ce forum : Aucun utilisateur enregistré et 56 invités

Tu pars déja ?



Fais toi aider gratuitement sur Maths-forum !

Créé un compte en 1 minute et pose ta question dans le forum ;-)
Inscription gratuite

Identification

Pas encore inscrit ?

Ou identifiez-vous :

Inscription gratuite