Fonction periodique T et Fourrier

Réponses à toutes vos questions après le Bac (Fac, Prépa, etc.)
mario31
Messages: 3
Enregistré le: 18 Oct 2013, 14:24

fonction periodique T et Fourrier

par mario31 » 18 Oct 2013, 14:26

Soit T un réel strictement positif, .
Soit g une fonction T-périodique continue par
morceaux. On pose .


1. Montrer que f est continue par morceaux et -périodique.
2. On a


Exprimer sous forme d'une intégrale entre 0 et T.
3. En déduire une expression la série de Fourier de g.


Je voit pas comment montrer que f est continue par morceaux?



arnaud32
Membre Irrationnel
Messages: 1982
Enregistré le: 18 Oct 2010, 14:43

par arnaud32 » 18 Oct 2013, 16:47

je supose que c'est f(t)=g(t/w) ?
comment est la fonction g? et la fonction t -> t/w?

mario31
Messages: 3
Enregistré le: 18 Oct 2013, 14:24

par mario31 » 19 Oct 2013, 09:11

non c'est bien
.
g est 2 - périodique et c'est tout ce qu'on sait

deltab
Membre Rationnel
Messages: 806
Enregistré le: 18 Juin 2013, 09:12

par deltab » 19 Oct 2013, 11:33

Bonjour
mario31 a écrit:non c'est bien
.
g est 2 - périodique et c'est tout ce qu'on sait


On a soit . soit , les parenthèses sont superflues. Revois bien ton énoncé !!!!!

mario31
Messages: 3
Enregistré le: 18 Oct 2013, 14:24

par mario31 » 19 Oct 2013, 18:31

il manque bien un g
c'est

comment montrer que f est continue par morceaux?

 

Retourner vers ✯✎ Supérieur

Qui est en ligne

Utilisateurs parcourant ce forum : Aucun utilisateur enregistré et 160 invités

Tu pars déja ?



Fais toi aider gratuitement sur Maths-forum !

Créé un compte en 1 minute et pose ta question dans le forum ;-)
Inscription gratuite

Identification

Pas encore inscrit ?

Ou identifiez-vous :

Inscription gratuite