Factorisations

Réponses à toutes vos questions de la 2nde à la Terminale toutes séries
Eliry
Messages: 3
Enregistré le: 23 Jan 2012, 18:37

Factorisations

par Eliry » 23 Jan 2012, 18:40

Bonjour à tous !

Alors voilà, j'ai quelques factorisations à faire, le seul problème est que je n'y arrive pas. J'en ai déjà fait quelques unes -où je n'avais pas du tout de problème- mais celles ci sont plus dures. Je vous remercie de m'aider ! :)

A=(x+1)^2+x^2-1
B=(x-3)^2-(2x+1)^2
C=(4x-2)(x+1)+x^2+2x+1
D= 4x^2 ;) 25 + (2x + 5)(x + 2)

Encore merci et j'espère que vous pourrez m'éclairer là dessus !



annick
Habitué(e)
Messages: 6291
Enregistré le: 16 Sep 2006, 09:52

par annick » 23 Jan 2012, 18:50

Bonjour,
pour la première, x²-1 ne te rappelle-t-il pas quelque chose ?

SaintAmand
Membre Rationnel
Messages: 901
Enregistré le: 17 Oct 2011, 11:47

par SaintAmand » 23 Jan 2012, 18:52

Eliry a écrit:A=(x+1)^2+x^2-1
B=(x-3)^2-(2x+1)^2
C=(4x-2)(x+1)+x^2+2x+1
D= 4x^2 ;) 25 + (2x + 5)(x + 2)


Ne vois-tu pas d'identités remarquables dans ou par exemple ?

Eliry
Messages: 3
Enregistré le: 23 Jan 2012, 18:37

par Eliry » 23 Jan 2012, 18:52

annick a écrit:Bonjour,
pour la première, x²-1 ne te rappelle-t-il pas quelque chose ?



Bonjour !

Merci d'avoir répondu si vite :) L'inverse de (x+1)² ?

SaintAmand : C'est ça le problème, je vois pas du tout comment faire :s

jeffb952
Membre Relatif
Messages: 232
Enregistré le: 05 Jan 2012, 11:26

par jeffb952 » 23 Jan 2012, 18:55

Eliry a écrit:Bonjour à tous !

Alors voilà, j'ai quelques factorisations à faire, le seul problème est que je n'y arrive pas. J'en ai déjà fait quelques unes -où je n'avais pas du tout de problème- mais celles ci sont plus dures. Je vous remercie de m'aider ! :)

A=(x+1)²+x²-1
B=(x-3)²-(2x+1)²
C=(4x-2)(x+1)+x²+2x+1
D= 4x² ;) 25 + (2x + 5)(x + 2)

Encore merci et j'espère que vous pourrez m'éclairer là dessus !


BONSOIR Eliry ! Tes factorisations utilisent toutes les IDENTITES REMARQUABLES !

Tes expressions A, B et D utilisent , en particulier , l'identité : a² - b² = (a+b) (a-b)

Dans A, tu factorises la partie " x² - 1 " et tu remarqueras un facteur commun avec le (x+1)² !

Dans B , reconnais la forme (x - 3)² - (2x+1)² que tu vas pouvoir factoriser avec la formule habituelle ! Ici, le "a" est un peu plus compliqué de même que le "b", alors , fais attention ! Mais ce n'est pas difficile !

Même travail pour D avec un facteur commun que tu reconnaîtras.

Et le C ? Regarde bien la partie " x² + 2x + 1" ...... Tu reconnais ?

BON COURAGE !

annick
Habitué(e)
Messages: 6291
Enregistré le: 16 Sep 2006, 09:52

par annick » 23 Jan 2012, 18:55

Non.
Ca ne te dis rien a²-b² comme identité remarquable ?

Eliry
Messages: 3
Enregistré le: 23 Jan 2012, 18:37

par Eliry » 23 Jan 2012, 18:58

jeffb952 a écrit:BONSOIR Eliry ! Tes factorisations utilisent toutes les IDENTITES REMARQUABLES !

Tes expressions A, B et D utilisent , en particulier , l'identité : a² - b² = (a+b) (a-b)

Dans A, tu factorises la partie " x² - 1 " et tu remarqueras un facteur commun avec le (x+1)² !

Dans B , reconnais la forme (x - 3)² - (2x+1)² que tu vas pouvoir factoriser avec la formule habituelle ! Ici, le "a" est un peu plus compliqué de même que le "b", alors , fais attention ! Mais ce n'est pas difficile !

Même travail pour D avec un facteur commun que tu reconnaîtras.

Et le C ? Regarde bien la partie " x² + 2x + 1" ...... Tu reconnais ?

BON COURAGE !


Grand merci à toi pour ces explications, je vais essayer ça; il faut dire que c'est pas trop mon truc les factorisations, je préfère de loin les développements..

Annick : Comme je l'ai dit, je vais essayer du coup avec ce que vous venez de me dire, je te remercie également ! :)

 

Retourner vers ✎✎ Lycée

Qui est en ligne

Utilisateurs parcourant ce forum : Aucun utilisateur enregistré et 76 invités

Tu pars déja ?



Fais toi aider gratuitement sur Maths-forum !

Créé un compte en 1 minute et pose ta question dans le forum ;-)
Inscription gratuite

Identification

Pas encore inscrit ?

Ou identifiez-vous :

Inscription gratuite