Algorithme

Réponses à toutes vos questions de la 2nde à la Terminale toutes séries
Hibou.81
Membre Naturel
Messages: 23
Enregistré le: 20 Sep 2010, 20:05

Algorithme

par Hibou.81 » 18 Nov 2010, 22:33

Bonjour,
Nous avons tout d'abord l'algorithme suivant;

VARIABLES
-a est du type nombre
-b est du type nombre
-c est du type nombre
-r est du type nombre
DEBUT ALGORITHME
-LIRE a
-b PREND LA VALEUR (a+3)*(a+3)
-c PREND LA VALEUR (a-3)*(a-3)
-r PREND LA VALEUR b-c
-AFFICHER r
FIN ALGORITHME

Tout d'abord la première question me demander de tester l'algorithme
avec a=1 j'ai trouvé r=12
et avec a=3 j'ai trouvé r=36

La seconde question est : Exprimer r en fonction de a
Puisque r= [(a+3)*(a+3)]-[(a-3)*(a-3)] j'en ai déduit que r=(a+3)²-(a-3)²
Cependant est ce que l'on ne peut pas factoriser plus cette expression?

3) Proposer un algorithme qui fournit le même résultat mais qui utilise moins de variables.

Je ne sais pas par où commencer avec cette question ni comment procédé
Pouvez-vous m'aider?


Merci d'avance



bentaarito
Membre Rationnel
Messages: 603
Enregistré le: 30 Oct 2009, 01:58

par bentaarito » 19 Nov 2010, 00:22

bah tu peux utiliser factoriser encore {a²-b²=(a+b)(a-b)} tu trouves r=12a
un algorithme plus simple est alors r<-- 12*a

Avatar de l’utilisateur
Olympus
Membre Irrationnel
Messages: 1668
Enregistré le: 12 Mai 2009, 11:00

par Olympus » 19 Nov 2010, 00:59

Salut !

Si tu développes (a+3)²-(a-3)², tu remarqueras qu'elle est égale à 12a .

EDIT : oups, je réponds juste la même chose que bentaritoo ... je dois aller me coucher c'est tard :hum:

Hibou.81
Membre Naturel
Messages: 23
Enregistré le: 20 Sep 2010, 20:05

par Hibou.81 » 19 Nov 2010, 23:19

bentaarito a écrit:un algorithme plus simple est alors r<-- 12*a


Bentaario quand tu dis ça, tu veut dire que la seule variable sera a c'est ça?

Et merci à toi et à Olympus pour vos réponse :)

 

Retourner vers ✎✎ Lycée

Qui est en ligne

Utilisateurs parcourant ce forum : Aucun utilisateur enregistré et 56 invités

Tu pars déja ?



Fais toi aider gratuitement sur Maths-forum !

Créé un compte en 1 minute et pose ta question dans le forum ;-)
Inscription gratuite

Identification

Pas encore inscrit ?

Ou identifiez-vous :

Inscription gratuite