Voici un exercice qui me pose des problèmes :
On definit l'application ll.ll de Mn(R) dans R par : si A=(aij), llAll=max
Pour M dans Mn(R) on note r(M)= max lvl
1)Montrer que ll.ll est une norme sur Mn(R)
2)Montrer que llABll<= llAll llBll
3)a.Montrer que llM^kll<llMll^k
3)b. En deduire que si llMll<1 alors la suite (M^k) converge vers la matrice nulle
4)a. Calculez ll In ll
4)b. Si D est une matrice diagonale calculer llDll en fonction de r(D)
Je suis bloqué :
pour la 4)a. ll In ll = n ceci est-il juste ?
pour la 4)b. llDll = la somme des lvl mais je n'arrive pas a relier a r(D)
Pouvez vous m'aider merci d'avance
