Probabilité et Algorithme

Réponses à toutes vos questions de la 2nde à la Terminale toutes séries
nicolejelly
Messages: 2
Enregistré le: 14 Mar 2015, 18:41

Probabilité et Algorithme

par nicolejelly » 14 Mar 2015, 18:46

Je demande de l'aide car je sèche complètement !

ÉNONCÉ : Une urne contient des boules indiscernables au toucher. Trois rouges notées R1, R2 et R3, et deux vertes notées V1 et V2. Le jeu consiste à tirer deux boules sans remettre la première. La probabilité d'avoir deux boules vertes est de 1/10.
L'algorithme suivant simule ce jeu en utilisant l'urne précédente. On rajoute en plus une mise.
Rappel :
-l'instruction int(X) donne la partie entière de X (le plus grand des entiers qui sont inférieurs ou égaux à X)
-l'instruction rand donne un nombre réel aléatoirement entre 0 et 1.

ALGORITHME :
Entrée : > : m
Traitement :
Affecter la valeur 0 à G
Si int(10*rand+1) = 10
Alors affecter 10*m à G
Sinon affecter 0 à G
Sortie : >, G

QUESTION :

1) Quelles nombres obtient-on avec l'instruction (10*rand+1) ?
Je ne sais pas du tout ! Sachant que rand est un nombre aléatoire réel, comment peut on savoir ?

Justifier que la probabilité que int(10*rand+1) = 10 est égale à 1/10.
On ne peut pas savoir sans avoir fait la question précédente --'

2) Quelle ligne de l'algorithme peut on enlever ?
On peut enlever la ligne juste après Traitement : >

3) Quelle peut être la règle de ce jeu ?
On tire deux boules dans l'urne. Si on obtient 2 vertes, on gagne dix fois sa mise. Sinon, on perd sa mise.

4) Le jeu est-il équitable ?
Aucune idée ! Faut il utiliser l'espérance mathématiques ??

Voilà je bloque pour les questions 1 et 4 et j'hésite pour les deux autres. Merci de m'aider !ÉNONCÉ : Une urne contient des boules indiscernables au toucher. Trois rouges notées R1, R2 et R3, et deux vertes notées V1 et V2. Le jeu consiste à tirer deux boules sans remettre la première. La probabilité d'avoir deux boules vertes est de 1/10.
L'algorithme suivant simule ce jeu en utilisant l'urne précédente. On rajoute en plus une mise.
Rappel :
-l'instruction int(X) donne la partie entière de X (le plus grand des entiers qui sont inférieurs ou égaux à X)
-l'instruction rand donne un nombre réel aléatoirement entre 0 et 1.

ALGORITHME :
Entrée : > : m
Traitement :
Affecter la valeur 0 à G
Si int(10*rand+1) = 10
Alors affecter 10*m à G
Sinon affecter 0 à G
Sortie : >, G

QUESTION :

1) Quelles nombres obtient-on avec l'instruction (10*rand+1) ?
Je ne sais pas du tout ! Sachant que rand est un nombre aléatoire réel, comment peut on savoir ?

Justifier que la probabilité que int(10*rand+1) = 10 est égale à 1/10.
On ne peut pas savoir sans avoir fait la question précédente --'

2) Quelle ligne de l'algorithme peut on enlever ?
On peut enlever la ligne juste après Traitement : >

3) Quelle peut être la règle de ce jeu ?
On tire deux boules dans l'urne. Si on obtient 2 vertes, on gagne dix fois sa mise. Sinon, on perd sa mise.

4) Le jeu est-il équitable ?
Aucune idée ! Faut il utiliser l'espérance mathématiques ??

Voilà je bloque pour les questions 1 et 4 et j'hésite pour les deux autres. Merci de m'aider !



danyL
Membre Rationnel
Messages: 682
Enregistré le: 03 Jan 2015, 13:29

par danyL » 14 Mar 2015, 19:25

bonsoir
dans l'énoncé il n'est pas précisé si 0 et 1 sont inclus
0 <= rand <= 1
ou
0 <= rand < 1
ou
0 < rand < 1

1) supposons 0 < rand < 1
0 < 10*rand < 10
1 < (10*rand+1) < 11

int(10*rand+1) vaut aléatoirement 1 2 3 4 5 6 7 8 9 ou 10

2) c'est ok

les probas ne sont pas mon fort, je laisse d'autres personnes répondre pour le reste


(tu as copié 2 fois l'énoncé, tu peux éditer ton post)

nicolejelly
Messages: 2
Enregistré le: 14 Mar 2015, 18:41

par nicolejelly » 15 Mar 2015, 09:05

D'accord j'ai compris. Mais pour la question un, l'énoncé ne le précise pas... mais la question n'est pas terminée. Il reste à trouver que int(10*rand+1) = 10 àa une probabilité de 1/10. Je sais que int(X) désigne la partie "entière" de X. Qu'est ce que cela signifie ?

 

Retourner vers ✎✎ Lycée

Qui est en ligne

Utilisateurs parcourant ce forum : Aucun utilisateur enregistré et 64 invités

Tu pars déja ?



Fais toi aider gratuitement sur Maths-forum !

Créé un compte en 1 minute et pose ta question dans le forum ;-)
Inscription gratuite

Identification

Pas encore inscrit ?

Ou identifiez-vous :

Inscription gratuite