Energie cinétique et migraine (amateur)

De la mécanique au nucléaire, nos physiciens sont à l'écoute
Chrisdel62
Messages: 6
Enregistré le: 20 Mar 2018, 15:39

Energie cinétique et migraine (amateur)

par Chrisdel62 » 20 Mar 2018, 15:44

On m'a posé une question de physique on-ne-peut-plus classique, relative à la conservation de l'énergie... à laquelle je n'ai pas su répondre, et qui depuis ne cesse de me torturer les méninges. Mes recherches sur Internet ne m'ayant été d'aucune aide, j'en suis venu à vous poser la dite question. Pitié, aidez-moi !

Précision : nous sommes dans un cadre classique (non relativiste) et idéalisé (hors frottements).

Cette question peut se résumer ainsi...
Comment concilier le fait que l'énergie cinétique évolue en fonction du carré de la vitesse (1/2mv^2), et le fait que l'énergie permettant de modifier cette vitesse évolue avec la simple valeur de la vitesse ?

Prenons un exemple en simplifiant au maximum : je ne mets pas d'unité et 1/2m vaut 1.

Je vogue sans accélération dans le milieu interstellaire (je suis un parfait référentiel galiléen).

Une fusée A est immobile dans mon repère mais dépense un litre de brouzouf pour accélérer et établir sa vitesse à v=10.
Son Ec vient donc de passer, pour moi, de 0 à 100 (1/2mv^2=10^2=100).
Une fusée B (même masse) qui se déplace déjà à v=10, consomme elle aussi un litre de brouzouf pour produire la même accélération et établir donc sa vitesse à v=20 en passant devant moi.
Son Ec vient donc de passer, pour moi, de 100 à 400 (1/2mv^2=20^2=400).

Donc, dans le premier cas, l'énergie chimique d'un litre de brouzouf permet un gain d'énergie cinétique de 100. Et dans le second cas, l'énergie chimique de ce même litre de brouzouf se transforme en un gain d'énergie cinétique de 300. Vous voyez où se situe le problème lorsque je veux faire le bilan énergétique des deux cas.

Je sais bien sûr que le système isolé "fusée" comprend également les gaz d'échappement, leur quantité de mouvement, leur énergie cinétique.
Je n'ai pas de souci avec la quantité de mouvement du système qui demeure inchangée avant et après l'accélération... mais je ne parviens pas à établir la conservation de l'énergie.

Quelqu'un a une idée ? Merci d'avance.



pascal16
Membre Transcendant
Messages: 4057
Enregistré le: 01 Mar 2017, 13:58
Localisation: Angoulème : Ville de la BD et du FFA. gare TGV

Re: Energie cinétique et migraine (amateur)

par pascal16 » 20 Mar 2018, 16:55

quand tu te dis "somme des forces = ma", tu te dis, f=cst(ce qui est vrai pour la propulseur si on veut) donc accélération = constante (ce qui est faux)

Il y a les forces d'inertie.
La force qui te mange le carburant, c'est la force d'inertie d'entrainement.
C'est elle qui "crée" ton énergie cinétique.
Il te manque donc une force dans le bilan, force qui correspond exactement à ce qui fait que l'énergie cinétique gagnée sera la même dans les deux cas

Black Jack
Habitué(e)
Messages: 4013
Enregistré le: 31 Juil 2008, 10:17

Re: Energie cinétique et migraine (amateur)

par Black Jack » 20 Mar 2018, 19:44

Salut,

Erreur importante sur le principe.

On ne peut pas comparer des énergies cinétiques prises dans des référentiels différents.

Exemple :

Supposons un bonhomme de 70 kg dans un train, il est immobile par rapport au train et se met à marcher dans le couloir (vers l'avant du train) à la vitesse V = 1 m/s

Par rapport au train : avant que le bonhomme ne marche, son énergie cinétique est 0 J

Quand il marche, son énergie cinétique est 1/2.m.V² = 1/2 * 70 * 1² = 35 J

La différence d'énergie cinétique du bonhomme entre l'arret et sa marche est, par rapport au train de 35 J

----
Supposons que le train était à l'arrêt, on calcule, cette fois dans un référentiel terrestre que Delta E cinétique = 35J

MAIS, si le train roule à 5 m/s par rapport au sol.

La vitesse du bonhomme arrêté dans le train est de 5 m/s dans un référentiel terrestre, son énergie cinétique est donc 1/2 * 70 * 5² = 875 J

La vitesse du bonhomme qui marche dans le train est de 5+1 = 6 m/s dans un référentiel terrestre, son énergie cinétique est donc 1/2 * 70 * 6² = 1250 J

La différence d'énergie cinétique du bonhomme entre son arret dans le train et sa marche est, dans un référentiel terrestre de 1250 - 875 = 375 J
----

Donc, bien que pour le bonhomme, il n'y a aucune différence dans l'énergie qu'il dépense pour marcher dans le train que le train roule ou pas ...

Son énergie cinétique ne varie pas de la même quantité dans un référentiel lié au train et dans un référentiel terrestre.
------------

C'est le même genre d'erreur faite ici.

L'énergie apportée par le carburant est la même dans les 2 cas dans un référentiel lié à la fusée ...

Mais on ne peut pas en conclure que cela correspond à une variation d'énergie cinétique de même valeur dans un autre referentiel (terrestre par exemple).

2 eme erreur : pour faire un bilan des énergies ... on ne peut pas oublier l'energie cinétique des gaz éjectés (et là aussi ce n'est pas facile car la vitesse des gaz est constant par rapport à la fusée ... mais pas dans un référentiel terrestre.
-----

Bref c'est bien plus complexe que tu ne le penses.


En supposant la fusée loin de tout (pour négliger les effets des forces de gravitation externes) et hors frottement.

On démontre : vf - vi = Vg.ln|Mi/Mf|

Avec vi la vitesse initiale, vf la vitesse finale, Vg la vitesse d'éjection des gaz (par rapport à la fusée), Mi la masse initiale et Mf la masse finale (donc Mi - masse des gaz éjectés)

Pour 2 fusées identiques qui éjectent des gaz à la même vitesse par rapport à la fusée pendant une même durée (et donc même consommation dans les 2 cas), on trouve vf - vi = constante.

Avec Vf et Vi dans un référentiel inertiel (donc pas lié à la fusée) et Vg la vitesse d'éjection des gaz (dans un référentiel lié à la fusée).

Si on veut vérifier la conservation de l'énergie, il faut tenir compte de tout et tout ramener dans un référentiel inertiel et tenir compte aussi de l'énergie potentielle chimique qui était dans le carburant et a été converti en énergie mécanique ...

Rien relu. 8-)

Chrisdel62
Messages: 6
Enregistré le: 20 Mar 2018, 15:39

Re: Energie cinétique et migraine (amateur)

par Chrisdel62 » 21 Mar 2018, 00:48

Déjà un grand merci pour les réponses.

Effectivement, c'est complexe. Si ce qui suit est naïf (ou simplement faux), n'hésitez pas.

Dans notre exemple, je constitue un référentiel inertiel.
De même, la fusée et ses gaz d'échappement que je n'oublie pas constituent un système isolé (espace interstellaire).
Si je veux faire un bilan énergétique (avec conservation de l'énergie) entre avant l'accélération et après l'accélération, j'ai quelque chose du type (et là, je ne suis sûr de rien) :
Ec_Fusée_initial + E_chimique_potentielle = Ec_Fusée_final + Ec_Gaz_final

Pas d'erreur jusque là ?

Dans le cas 1 (fusée accélérant de 0 à 10), on aurait donc :
0 + E_1litre_brouzouf = 100 + Ec_Gaz_final1

Dans le cas 2 (fusée accélérant de 10 à 20) :
100 + E_1litre_brouzouf = 400 + Ec_Gaz final2

Je sais que Ec_Gaz_final est différent dans les cas 1 et 2, dans mon référentiel. Mais cela suffit-il à rétablir l'équilibre ?
Et dans le cas contraire, comment écririez-vous correctement ces bilans énergétiques ?

Black Jack
Habitué(e)
Messages: 4013
Enregistré le: 31 Juil 2008, 10:17

Re: Energie cinétique et migraine (amateur)

par Black Jack » 21 Mar 2018, 14:34

Salut,

Il y a un os ... et même plusieurs.

1 litre de brouzouf permet d'éjecter un débit de gaz donné pendant un temps donné, ce qui revient à dire que :

1 litre de brouzouf permet de "pousser" la fusée avec une force F donnée pendant une durée donnée T.

Mais l'énergie fournie par une force F donnée pendant une durée donnée n'est pas une constante.

L'énergie communiquée au mobile est le produit (F * distance parcourue pendant la durée T)

Or la "distance parcourue pendant la durée T" varie avec la vitesse initiale du mobile.

Exemple chiffré :

F = 100 N et m = 500 kg (qu'on va même considérer comme invariable dans un cas simplifié et pour ne pas encore augmenter ta confusion) et T = 10 s

Vfinale = Vo + F/m * T

Eco = 1/2.m.Vo²
Ecf = 1/2.m.(Vo + F/m * T)²

Delta Ec = 1/2.m.(Vo + F/m * T)² - 1/2.m.Vo²

Delta Ec = 1/2.m.(F²/m² * T² + 2Vo.F*T/m)

Delta Ec = F²T²/(2m) + Vo.F.T (QUI DEPEND DE Vo)

Et donc 1 litre de brouzouf ne donne pas une même variation d'énergie cinétique (dans un référentiel galiléen) si la vitesse initiale Vo est différente et ceci même si la masse du mobile ne variait pas.
************

Autrement :

Si on apporte une énergie donnée E à un mobile et que cette énergie est totalement convertie en énergie cinétique ...
La variation de vitesse du mobile ne sera pas la même suivant la valeur de sa vitesse initiale.

a) si Vo = 0
Eco = 0

et en finale : Ecf = 0 + E
E = 1/2.m.Vf²
Vf = RacineCarrée(2E/m)

Donc la variation de vitesse est Delta Va = RacineCarrée(2E/m)

b) si Vo n'est pas nulle
Eco = 1/2.m.Vo²

et en finale : Ecf = 1/2.m.Vo² + E

1/2.m.Vf² = 1/2.m.Vo² + E
Vf² = Vo² + 2E/m

Vf = RacineCarrée(Vo² + 2E/m)

Donc la variation de vitesse est Delta Vb = RacineCarrée((Vo² + 2E/m)) - Vo

Et bien entendu, Delta Va est différent de Delta Vb

Ce qui permet de conclure que :

Une même énergie apportée à 2 mobiles de même masse se déplaçant à des vitesses initiales différentes n'apporte pas des mêmes différences de vitesse aux 2 mobiles.

8-)

Chrisdel62
Messages: 6
Enregistré le: 20 Mar 2018, 15:39

Re: Energie cinétique et migraine (amateur)

par Chrisdel62 » 21 Mar 2018, 19:50

Je te remercie.
Je reprends la conclusion, et dis-moi s'il y a une faille :
"Une même énergie apportée à 2 mobiles de même masse se déplaçant à des vitesses initiales différentes n'apporte pas des mêmes différences de vitesse aux 2 mobiles."
Ce qui équivaut au fait qu'il faut (beaucoup) plus de carburant à une fusée pour passer de v=100 à 110 que de v=0 à 10.
Ce qui résout le paradoxe.
Par exemple, si 1/2m vaut 1 et que la masse de carburant perdue est insignifiante par rapport à la masse de la fusée, et une accélération très faible.
a) De v=0 à 10, on a un gain en Ec = 100-0 = 100
b) De v=100 à 110, on a un gain en Ec = 12100 - 10000 = 2100
Il suffit donc de dire que si en (a) on a utilisé 1 litre de carburant, en (b), on a utilisé 21 litres de carburant.
Et le tour est joué...

Pas sûr.

A mon tour de te proposer un raisonnement s'appuyant sur des principes tout aussi fondamentaux sinon plus...

Je m'appelle Arthur (A) et je suis immobile dans mon repère interstellaire. Un parfait repère galiléen (et je répète que l'on reste dans un cadre non relativiste : mes fusées sont de vraies deudeuches de l'espace).
Bernard (B) est dans sa fusée, près de moi, prêt à partir.
Charles (C) est déjà parti, sur ma gauche, depuis un certain temps. Il en a terminé avec son accélération, et s'éloigne à présent de nous avec une vitesse constante v1=100. De son point de vue, nous nous éloignons à la même vitesse constante (il constitue, lui aussi, un parfait référentiel galiléen).

B décolle vers la droite, et coupe les moteurs lorsqu'il atteint une vitesse v2 (par rapport à A) égale à 10. Il devient lui aussi un parfait référentiel galiléen. Il regarde sa jauge de carburant, et il a consommé 1 litre de brouzouf pendant son accélération de v=0 à v=10.
Mais pour C, qui s'éloigne de l'autre côté mais parfaitement immobile dans son propre repère), B a accéléré de v=100 à v=110 (avec un gain faramineux en énergie cinétique).
Si l'on suit la conclusion de ton message, du point de vue de C, B a donc consommé beaucoup de litres de brouzouf pour acquérir sa nouvelle vitesse... Or, non, il n'en a consommé qu'un.

On en revient au paradoxe de départ.

La relativité galiléenne nous amène à conclure qu'une même accélération, quelle que soit la vitesse de départ, "consomme" la même énergie. C'est la base même de la relativité en physique classique.
La Loi de l'énergie cinétique nous amène à conclure le contraire... à moins qu'il y ait une autre façon d'établir le bilan énergétique pour chaque situation.
Et là, je continue à sécher.

Chrisdel62
Messages: 6
Enregistré le: 20 Mar 2018, 15:39

Re: Energie cinétique et migraine (amateur)

par Chrisdel62 » 23 Mar 2018, 15:15

Je viens clore le sujet.
La réponse a été donnée (preuve numérique à l'appui) sur un autre forum.
Voici comment se présentait le problème :
____________________

J'observe depuis un référentiel inertiel dans l'espace interstellaire, et je tente de calculer le bilan énergétique d'un système isolé (fusée + éléments de propulsion).
Si je ne me trompe pas, puisqu'il y a conservation de l'énergie du système (système isolé, calculs à partir d'un référentiel inertiel, moi), on a :
Somme des énergies cinétique et potentielle initiales = Somme des énergies cinétique et potentiel finales.
C'est ce bilan que j'essaie de faire dans ces deux cas (vi=0 et vi=100), avant et après l'accélération.

Tous les calculs se font dans mon référentiel (et non celui de la fusée), y compris la vitesse des gaz ce qui fait, bien sûr, que leur énergie cinétique est différente dans les deux cas. Il n'y a pas ici de vitesses dans des référentiels différents.
Au pire, on peut simplifier la propulsion en prenant (au lieu du carburant et des gaz), un ressort et un caillou à éjecter.
On aurait alors :
Ec_Fusée_initial + E_potentielle_ressort = Ec_Fusée_final + Ec_Caillou

Donc, avec 1/2 m_fusée = 1 :

Dans le cas 1 (fusée accélérant de v=0 à 10), on aurait donc :
0 + E_ressort = 100 + Ec_Caillou1
Donc : E_ressort - Ec_Caillou1 = 100

Dans le cas 2 (fusée accélérant de v=100 à 110) :
10000 + E_ressort = 12100 + Ec_Caillou2
Donc : E_ressort - Ec_Caillou2 = 2100

Je sais qu'en toute intégrité je devrais retrancher la masse du caillou pour le calcul de l'Ec finale de la fusée mais comme cette masse est très petite par rapport à la fusée et que cette masse n'évolue pas avec la vitesse (non relativiste) de départ, ça n'a pas grand intérêt. Mais si vous le souhaitez vous pouvez mettre 1/2 m_fusée_finale = 0,999999. En revanche, je prends bien sûr en compte Ec_Caillou 1 et 2 car les vitesses d'éjection peuvent être très grandes.

Première question :
L'énergie potentielle de départ, E_ressort, est elle identique dans les deux cas ? La relativité galiléenne (voir démonstration plus haut) semble le confirmer.

Deuxième question :
Si la réponse précédente est "oui", la seule valeur pouvant nous faire retomber sur nos pattes est la différence entre Ec_Caillou1 et Ec_Caillou2.
Est-ce là que se situe la vérité ?
__________________________________________

La réponse a été donnée.

L'explication se trouve bien dans la différence d'EC du caillou entre le cas 1 et le cas 2. Il n'y a, comme je l'imaginais, aucune variation de l'énergie potentielle selon la vitesse initiale.

Dans le problème que je posais et avec les données numériques suivantes :
Masse fusée sans caillou = 0,999999
Masse caillou = 0,000001

Energie potentielle du ressort (qui donc est constante dans les deux cas, dans tous les référentiels inertiels) est égale à... 10^8 + 300.

J'ai même fait, pour vérifier, le calcul à rebours afin de m'assurer que les deux vitesses d'éjection du caillou (dans mon référentiel) avaient bien un différentiel de 100.
Et c'est le cas (v1=10 000 010 et v2=9 999 910) !

La loi de conservation de l'énergie mécanique et la relativité galiléenne sont sauvées ;-)

Encore merci pour vos efforts.

Black Jack
Habitué(e)
Messages: 4013
Enregistré le: 31 Juil 2008, 10:17

Re: Energie cinétique et migraine (amateur)

par Black Jack » 23 Mar 2018, 19:11

Salut,

Cà c'est vraiment du n'importe quoi.

Pour que C atteigne une vitesse 100 (par rapport à A), il a dépensé une énergie 1/2.m.100² = 5000.m (avec m la masse de la fusée considérée comme constante)
Il continue ensuite en conservant par inertie sa vitesse 100 ... sans plus rien consommer.

Pour atteindre la vitesse 10 (par rapport à A), B a consommé une énergie 1/2.m.10² = 50.m (si les 2 fusées ont une même masse m) et il continue ensuite à cette vitesse sans plus rien conssommer.

B a donc consommé une énergie 100²/10² = 100 fois plus petite que C.

Et cela s'arrète là.

Donc avec des calculs avec un référentiel lié à A :

Energie pour B : 50.m
Energie pour C : 5000.m

*****************

On peut utiliser le référentiel qu'on veut ... mais il faut alors en tenir compte dans le calcul.

Soit F la force utilisée pour accélérer C (lié à A)

Dans le référentiel lié à B, on a VC = F/m * t + 10

Soit T la durée pour atteindre 110 (référentiel lié à B) : 110 = F/m * T + 10

T = 100.m/F

La distance parcourue par C (référentiel lié à B) pendant cette durée est : d = a.T²/2 = F/m * (100.m/F)²/2 = 5000 m/F

Le travail sur C (référentiel lié à B) pour atteindre la vitesse 110 est : W = F * d = F * 5000m/F = 5000 m

Soit donc la même valeur que calculé avec un référentiel lié à A.


L' erreur à ne pas commettre est de considérer que le véhicule C est sur une piste se déplaçant avec le véhicule B, il accélère sur une piste liée à A.
Ce qui n'empêche pas de calculer les énergies mises en jeu pour mettre C en mouvement par rapport à A et de faire ces calculs dans un référentiel lié à B.

8-)

Chrisdel62
Messages: 6
Enregistré le: 20 Mar 2018, 15:39

Re: Energie cinétique et migraine (amateur)

par Chrisdel62 » 23 Mar 2018, 23:14

Black Jack a écrit:Salut,

Cà c'est vraiment du n'importe quoi.

Pour que C atteigne une vitesse 100 (par rapport à A), il a dépensé une énergie...


Désolé Black Jack, il y a une mauvaise compréhension de ta part : au départ, C a déjà une vitesse constante de 100 par rapport à A.
On est simplement dans le milieu interstellaire, et on s'intéresse au bilan énergétique, depuis un référentiel inertiel A, d'une fusée B passant de v=0 à 10, et d'une fusée C passant de v=100 à 110.
On ne s'intéresse pas au différents périples galactiques de C avant ça ;-)

Black Jack
Habitué(e)
Messages: 4013
Enregistré le: 31 Juil 2008, 10:17

Re: Energie cinétique et migraine (amateur)

par Black Jack » 26 Mar 2018, 18:14

Je ne change pas un iota à ce que j'ai écrit.

Pour qu'une fusée passe (dans un référentiel inertiel) de v = 0 à 10 , son énergie cinétique va augmenter de Ec1

MAIS pour ce faire, elle aura éjecté des gaz ... qui feront que la masse de la fusée a diminué.

Et les gaz éjectés auront une énergie cinétique Ec2 (calculable)

La variation d'énergie cinétique de l'ensemble fusée + gaz est (Ec1 + Ec2)
*********
Pour qu'une fusée de même masse initiale et pour une même éjection de gaz, passe (dans un référentiel inertiel) de v = 100 à 110 , son énergie cinétique va augmenter de Ec3

MAIS pour ce faire, elle aura éjecté des gaz ... qui feront que la masse de la fusée a diminué.

Et les gaz éjectés auront une énergie cinétique Ec4 (calculable)

La variation d'énergie cinétique de l'ensemble fusée + gaz est (Ec3 + Ec4)
*********

Ec1 est différent de Ec3 ... et Ec2 est différent de Ec4, MAIS, on aura (Ec1 + Ec2) = (Ec3 + Ec4) ... qui correspond à l'énergie délivrée par une même quantité de carburant.

8-)

Chrisdel62
Messages: 6
Enregistré le: 20 Mar 2018, 15:39

Re: Energie cinétique et migraine (amateur)

par Chrisdel62 » 29 Mar 2018, 11:59

Black Jack a écrit:Ec1 est différent de Ec3 ... et Ec2 est différent de Ec4, MAIS, on aura (Ec1 + Ec2) = (Ec3 + Ec4) ... qui correspond à l'énergie délivrée par une même quantité de carburant.
8-)

C'est tout à fait ça.

 

Retourner vers ⚛ Physique

Qui est en ligne

Utilisateurs parcourant ce forum : Aucun utilisateur enregistré et 6 invités

Tu pars déja ?



Fais toi aider gratuitement sur Maths-forum !

Créé un compte en 1 minute et pose ta question dans le forum ;-)
Inscription gratuite

Identification

Pas encore inscrit ?

Ou identifiez-vous :

Inscription gratuite