Petite équation à résoudre !!

Réponses à toutes vos questions de la 2nde à la Terminale toutes séries
tofer182
Messages: 1
Enregistré le: 23 Nov 2012, 12:39

petite équation à résoudre !!

par tofer182 » 23 Nov 2012, 12:51

x^3 - 3x + 6 = 0
je suis censé trouver une solution ! :we:
quelqu'un peut il m'aider ?



sylvain.s
Membre Rationnel
Messages: 679
Enregistré le: 18 Oct 2012, 15:52

par sylvain.s » 23 Nov 2012, 13:10

[CENTER]BONJOUR !!!![/CENTER]

Je ne sais pas résoudre les équations du troisième degré :(, cependant j'ai trouvé ceci sur internet, cela pourra peut être t'aider :

http://homeomath.imingo.net/equa33.htm

Bon courage

Joker62
Membre Transcendant
Messages: 5027
Enregistré le: 24 Déc 2006, 19:29

par Joker62 » 23 Nov 2012, 15:48

J'imagine qu'on ne demande pas la valeur exacte.

Alors, on étudie les variations de f : x-> x^3 - 6x + 3, on utilise le théorème des valeurs intermédiaires et on encadre avec la calculatrice.

hammana
Membre Relatif
Messages: 477
Enregistré le: 24 Avr 2012, 20:26

par hammana » 23 Nov 2012, 15:55

tofer182 a écrit:x^3 - 3x + 6 = 0
je suis censé trouver une solution ! :we:
quelqu'un peut il m'aider ?


L'étude de la variation de la fonction y=x^3-3x+6 montre qu'il y a une seule racine comprise entre -3 et -2

1) Tu peux utiliser la formule de Cardan (il y a beaucoup de sites qui donnent cete formule, cherche "formule de cardan" sur google" qui donne x=-2.3553014

2) Tu peux commencer par x=-2, calculer y=x-(x^3-3x+6)/10,
remplacer x par la valeur calculée de y et refaire un nouvelle fois le calcul de y
Si tu répète cette opération une quinzaine de fois (L'opération est un peu fastidieuse à moins d'avoir une calculatrice adéquate) tu obtiens la racine avec 6 décimales exactes. C'est la méthode du point fixe

3)Tu peux commencer par la valeur approchée x=-2, écrire l'équation de la tangente en ce point, chercher l'abscisse du point où elle rencontre l'axe Ox et recommencer en partant de la valeur ainsi trouvée. En faisant cette opération 2 ou 3 fois tu dois trouver la racine avec une précision suffusante.

4) Tu peux essayer la méthode dichotomique. Si la fonction a des valeurs de signes contraires pour x=x1 et x=x2 tu essaies avec une valeur voisine de (x1+x2)/2. Il faut beaucoup d'essais pour obtenir 3 décimales exactes

Dlzlogic
Membre Transcendant
Messages: 5273
Enregistré le: 14 Avr 2009, 12:39

par Dlzlogic » 23 Nov 2012, 16:05

Apparemment c'est un exercice scolaire.
Dans votre cours, il doit y avoir une méthode à utiliser pour résoudre ce genre d'équation.
Sinon, il existe une formule que j'ai sous les yeux, un peu longue et compliquée à taper ici.

Avatar de l’utilisateur
leon1789
Membre Transcendant
Messages: 5486
Enregistré le: 27 Nov 2007, 15:25

par leon1789 » 23 Nov 2012, 19:59

A mon avis, on ne demande pas de calculer l'unique solution avec des radicaux... vu sa tête :

Anonyme

par Anonyme » 23 Nov 2012, 20:40

tofer182 a écrit:x^3 - 3x + 6 = 0
je suis censé trouver une solution ! :we:
quelqu'un peut il m'aider ?
Comme il n'y a pas de solution évidente , à mon avis cet exo est infaisable pour un niveau lycée
( à moins que dans cet exo , il y ait , des questions intermédiaires qu'on nous aurait caché ?)

 

Retourner vers ✎✎ Lycée

Qui est en ligne

Utilisateurs parcourant ce forum : Aucun utilisateur enregistré et 92 invités

Tu pars déja ?



Fais toi aider gratuitement sur Maths-forum !

Créé un compte en 1 minute et pose ta question dans le forum ;-)
Inscription gratuite

Identification

Pas encore inscrit ?

Ou identifiez-vous :

Inscription gratuite