Dm MATHS trigo
Réponses à toutes vos questions de la 2nde à la Terminale toutes séries
-
maevadu13
- Messages: 9
- Enregistré le: 27 Sep 2014, 09:47
-
par maevadu13 » 22 Nov 2014, 10:41
Bonjour,
pourriez vous m'aider à mon dm de maths s'il vous plaît ? merci de votre aide
on a f(x)=2/2+cos(x)
1)Justifier que f est définie sur R
2)Etudier la parité et la périodicité de f
3)a-déterminer f'(x) pour tout réel x et étudier son signe sur (o;pi)
b- en deduire les variations de f sur (o;pi)
c-dresser le tableau de variation de f sur l'intervalle (-pi;pi)
j'ai fait:
1) cos(x) différent de -2 or cos(x) est minoré en -1 donc 2+cos(x) est définie sur R
2)f(-x)=2+cos(-x) d'après le theorème de la parité on a cos(-x)=cos(x) donc f(x)=f(-x)
f(x+2pi)=2/(2+cos(x+2pi))
donc cos(x+2pi)=cos(x) donc d'après le théoréme de la périodicité la fonction f est périodique de la période 2pi
3) la je bloque en fait je pense que ma dérivée est fausse j'ai trouvé f'(x)= -sin(x)*2+(2+cos(x))/(2+cos(x))^2
merci de votre aide
-
siger
- Membre Complexe
- Messages: 2705
- Enregistré le: 16 Fév 2013, 19:56
-
par siger » 22 Nov 2014, 11:40
bonjour
f(x) = 2/(V) d'ou f'(x) =-2V'/V² avec V = 2+cosx
f'(x) = -2(-sinx /(2+cosx)²)
.....
-
maevadu13
- Messages: 9
- Enregistré le: 27 Sep 2014, 09:47
-
par maevadu13 » 22 Nov 2014, 11:45
bonjours je suis décoincé et maintenant j'en suis a la question c soit dresser e tableau de variation de f sur (-pi;pi) or je sais des question précédentes que f est strictement croissante sur (o;pi) pourrai-je obtenir de l'aide pour répondre a la c merci
-
siger
- Membre Complexe
- Messages: 2705
- Enregistré le: 16 Fév 2013, 19:56
-
par siger » 22 Nov 2014, 15:15
Re
tu connais f'(x) donc le sens de variation de f(x)
f'(x) = 2sinx/(2+cosx)² du signe de sinx sur (-pi,pi) ........
ou
tu sais que f(x) est croissante de o a pi et que ....f(x) est paire,
donc que la fonction a une courbe symetrique par rapport a Oy
-
maevadu13
- Messages: 9
- Enregistré le: 27 Sep 2014, 09:47
-
par maevadu13 » 22 Nov 2014, 15:18
AH merci je vois comment il faut faire
Utilisateurs parcourant ce forum : Aucun utilisateur enregistré et 46 invités