Fonction exponentielle

Réponses à toutes vos questions de la 2nde à la Terminale toutes séries
nouilleaubeurre
Messages: 3
Enregistré le: 06 Nov 2007, 23:30

fonction exponentielle

par nouilleaubeurre » 25 Nov 2007, 20:26

Bonjour !

J'ai un problème sur la fonction exponentielle qui me tracasse !
Merci si quelqu'un s'y intéresse.

Soit a et b deux réels et f la fonction définie pour tout réel x par :
F(x)=(ax+b)exp(x)

La courbe C représentative de f dans un repère orthonormé est donnée.
(C) passe par le point A(0 ;1)
La tangente (D) à (C) au point d’abscisse 0 passe par le point B (1 ;4)

1) Calculer a et b

Pour cela, j’ai interprété les données, d’abord calculé la dérivée
F’(x)=a.exp(x)+(ax+b).exp(x)

On sait que ( C ) passe par A(0;1)
Donc f(0)=1
Et b.exp(0)=1
Or exp(0)=1
Donc b=1

On sait que la tangente (D) à (C ) au point d’abscisse 0 passe par B(1 ;4)
A et B appartiennent à (D) donc coefficient directeur de (D)= 4-1/31=3
Et f’(0)=3
a.exp(0)+b.exp(0) =3
a+1=3
a=2

Donc cela donnerait f(x)= (2x+1).exp(x)

La question 2 demande de justifier les résultats du tableau de variation de f.
Le problème est que je trouve que la dérivée s’annule pour x=-1/2 alors que dans le tableau du prof, c’est pour x=3/2
Donc le problème vient du 1), mais je n’arrive pas à voir où !

Voilà merci d'avance.



Avatar de l’utilisateur
Sa Majesté
Membre Transcendant
Messages: 6275
Enregistré le: 23 Nov 2007, 14:00

par Sa Majesté » 25 Nov 2007, 20:44

Si f(x)= (2x+1).exp(x)
alors f'(x)= (2x+3).exp(x)
qui s'annule en x=-3/2

 

Retourner vers ✎✎ Lycée

Qui est en ligne

Utilisateurs parcourant ce forum : Aucun utilisateur enregistré et 95 invités

Tu pars déja ?



Fais toi aider gratuitement sur Maths-forum !

Créé un compte en 1 minute et pose ta question dans le forum ;-)
Inscription gratuite

Identification

Pas encore inscrit ?

Ou identifiez-vous :

Inscription gratuite