Correction d'un exo svp (asymptote)

Réponses à toutes vos questions de la 2nde à la Terminale toutes séries
makak06
Membre Naturel
Messages: 38
Enregistré le: 24 Oct 2005, 22:53

Correction d'un exo svp (asymptote)

par makak06 » 07 Fév 2006, 20:43

Salut a tous, j'ai deja fais l'exercice mais j'aimerais savoir si c'est juste ou pas, merci a celui ou celle qui me le corrigera ;-)

voici l'ennoncé :

On considere la fonction f definie sur :
]- inf/;0[U]0;+ inf/[
Par : f(x) = (x-1)² / x

On designe par C sa courbe représentative dans un repere orthonormal (O,i,j) (unité 1 cm)

1°/ Determiner les limite de f en 0. Indiquer une conséquence graphique du resultat
2°/ a) Déterminer les limites de f en + inf/ et en - inf/.
b) Démontrer que la droite D d'équation y = x-2 asymptote à C
c) étudier la position relative de C et D
3°/ Etudier les varations de f et et dresser le tableau des variations complété par les limites


Alors voici ce que j'ai fais !!!

1°/ lim f(x)= (0-1)²/0- =1/0- = - inf/
x -> 0
x<0
lim f(x) = (0-1)²/0+ = + inf/
x->0
x>0
Les limites de f(x) en 0 sont + inf/ et - inf/ donc x=0 est une asymptote verticale

2°/a) lim f(x) = ( + inf/ -1)² / + inf/ = + inf/ / + inf/

On aboutit donc a une forme inderterminée donc on developpe f(x)
f(x) = (x-1)²/x = x²-2x+1 / x = (x²/x) - (2x/x) + (1/x)
f(x) = x-2 + (1/x)

* lim x = + inf/
x-> + inf/

lim x = - inf/
x-> - inf/

* lim 1/X = 1/ +inf=0
x-> + inf/

lim 1/x = 1§-inf/ = 0
x-> -inf/

Donc : lim f(x) = + inf/
x-> + inf/
lim f(x) = - inf/
x-> - inf/

B) Droite D d'équation y = x-2 asymptote à C, l'équation de la droite D est de la forme y = ax+b donc elle pourait etre asymptote oblique. Pour cela, il gaut que lim [f(x) - (ax+b)] = O quand x-> - et + inf/

[f(x) - (ax+b)] = (x-1)²/x - (x-2)
= x²-2x+1-x²+2x
=1/x
lim 1/x = 0 quand x tend vers - et + inf/

C) C : f(x) = (x-1)²/x
D: y = x-2
Pour etudier la position relative de C et D, on soustrait ces deux derniers.
f(x)-(x-2) = 1/x

Si x>O, C est au dessus de D
Si x
3) f(x) = (x-1)²/x
Df=Df'=R*
u'(x) = 2x u' x u = 2x(x-1)x1=2x-2
v'(x)=1
donc u/v = u'v-uv'/v²
donc f(x) = [(2x-2)x-(x-1)² x 1 ] / x²
= [2x²-2x-x²+2x-1] / x²
= (x²-1) / x²

Le signe de la dérivé est du meme signe que le numero car x² est toujours superieur :
Tableau de variation de f(x)

alors j'ai mis pour la ligne x²-1
-inf/ et -1 = +
-1 et 0 = -
0 et 1 = -
1 et +inf/ = +

pour la ligne x² dans l'ordre : + + + +
pour la ligne (x²-1)/x² dans l'ordre : + - - +
et pour le sens de variation de f(x) : monte, descend, (double barre) descend, monte


voila c'est fini merci a tout ceux qui m'aiderons !!!!

PS : quand j'ai mis inf/ c'était pour indiquer le 8 a l'horizontale ;-)
Merci



allomomo
Membre Irrationnel
Messages: 1231
Enregistré le: 01 Mai 2005, 01:14

par allomomo » 07 Fév 2006, 20:56

Salut,



1 - Limite en 0,



La fonction f admet une asymptote verticale en point d'abscisse 0

2 - Limite en


Limite en


3 -



La droite d'équation est une asymptote oblique à la courbe de la fonction f

4 - Position relative de C par rapport à revient à étudier le signe de

Si

5 - A toi de jouer

makak06
Membre Naturel
Messages: 38
Enregistré le: 24 Oct 2005, 22:53

par makak06 » 07 Fév 2006, 21:08

Merci bcp, si non le reste c'est bon ??
Merci encore

allomomo
Membre Irrationnel
Messages: 1231
Enregistré le: 01 Mai 2005, 01:14

par allomomo » 07 Fév 2006, 22:16

si tu ne comprends pas quelque chose tu peux deamnder

 

Retourner vers ✎✎ Lycée

Qui est en ligne

Utilisateurs parcourant ce forum : Aucun utilisateur enregistré et 36 invités

Tu pars déja ?



Fais toi aider gratuitement sur Maths-forum !

Créé un compte en 1 minute et pose ta question dans le forum ;-)
Inscription gratuite

Identification

Pas encore inscrit ?

Ou identifiez-vous :

Inscription gratuite