Algorithme
Réponses à toutes vos questions de la 2nde à la Terminale toutes séries
-
laitha
- Messages: 5
- Enregistré le: 16 Oct 2011, 12:15
-
par laitha » 07 Jan 2013, 15:51
Bonjour a tous ! J'aurai besoin de votre aide pour résoudre un exercice que je ne comprends pas:
En connaissant les coordonnées de deux points A et B , écrire un algorithme ( en language naturel ) qui renvoie les coordonnées de deux points C et D tels que ABCD soit un carré .
On expérimentera d'abord avec Géogébra por découvrir les relations entre les coordonnées des points
Je vous remercie de votre aide !
-
ampholyte
- Membre Transcendant
- Messages: 3940
- Enregistré le: 21 Juil 2012, 07:03
-
par ampholyte » 07 Jan 2013, 15:55
Bonjour,
par définition un carré possède des côtés égaux deux à deux et 4 angles perpendiculaires.
Voici les étapes auxquels réfléchir avant de se lancer dans l'algorithme.
1) Comment connaître la distance d'un segment à partir des coordonnées de A et B
2) Comment placer un point C tel que ABC soit perpendiculaire et que BC = AB
3) Idem pour D
Essaye de répondre à ses questions ici et on pourra poursuivre vers l'algorithme
-
laitha
- Messages: 5
- Enregistré le: 16 Oct 2011, 12:15
-
par laitha » 07 Jan 2013, 16:05
ampholyte a écrit:Bonjour,
par définition un carré possède des côtés égaux deux à deux et 4 angles perpendiculaires.
Voici les étapes auxquels réfléchir avant de se lancer dans l'algorithme.
1) Comment connaître la distance d'un segment à partir des coordonnées de A et B
2) Comment placer un point C tel que ABC soit perpendiculaire et que BC = AB
3) Idem pour D
Essaye de répondre à ses questions ici et on pourra poursuivre vers l'algorithme
Je ne comprends pas bien .. Mais j'ai oubliée de préciser a=(3;2) B=(9;1) c=(10;7) D=(4;8)
Excusez moi mais mon niveau de math est plutôt médiocre ..
-
laitha
- Messages: 5
- Enregistré le: 16 Oct 2011, 12:15
-
par laitha » 07 Jan 2013, 16:15
laitha a écrit:Je ne comprends pas bien .. Mais j'ai oubliée de préciser a=(3;2) B=(9;1) c=(10;7) D=(4;8)
Excusez moi mais mon niveau de math est plutôt médiocre ..
SVP merci de m'aider a résoudre ce probléme

-
ampholyte
- Membre Transcendant
- Messages: 3940
- Enregistré le: 21 Juil 2012, 07:03
-
par ampholyte » 07 Jan 2013, 16:25
Je ne comprends pas vraiment votre problème. Serait-il possible d'avoir l'exercice en entier ?
-
laitha
- Messages: 5
- Enregistré le: 16 Oct 2011, 12:15
-
par laitha » 07 Jan 2013, 16:29
ampholyte a écrit:Je ne comprends pas vraiment votre problème. Serait-il possible d'avoir l'exercice en entier ?
Je vous ai donner l'énoncé en entier .. Il faut " écrire un algorithme (en language naturel) qui renvoie les coordonnées de deux points C et D tels que ABCD soit un carré " Je ne comprends pas .. Je pense qu'il faut s'aider des coordonnées non ?
-
ampholyte
- Membre Transcendant
- Messages: 3940
- Enregistré le: 21 Juil 2012, 07:03
-
par ampholyte » 07 Jan 2013, 17:29
Oui tout à fait d'où mes questions pour toi.
1) Comment connaître la distance d'un segment à partir des coordonnées de A et B ?
Réponse : Il y a une formule qui permet à partir des coordonnées de trouver la distance entre A et B :
^2 + (y_B - y_A)^2})
2) Comment placer un point C tel que ABC soit perpendiculaire et que BC = AB
la formule :
^2 + (y_c - y_b)^2} = AB)
est toujours valable.
Tu peux également dire que

par définition du produit scalaire.
Il y a d'autres solutions encore...
-
chan79
- Membre Légendaire
- Messages: 10330
- Enregistré le: 04 Mar 2007, 19:39
-
par chan79 » 07 Jan 2013, 17:50
laitha a écrit:Bonjour a tous ! J'aurai besoin de votre aide pour résoudre un exercice que je ne comprends pas:
En connaissant les coordonnées de deux points A et B , écrire un algorithme ( en language naturel ) qui renvoie les coordonnées de deux points C et D tels que ABCD soit un carré .
On expérimentera d'abord avec Géogébra por découvrir les relations entre les coordonnées des points
Je vous remercie de votre aide !
Bonjour
Si tu as vu les nombres complexes et les similitudes, tu peux avoir facilement les formules qui donnent les coordonnées de C et de D en fonctions des coordonnées de A et de B.
Utilisateurs parcourant ce forum : Aucun utilisateur enregistré et 39 invités