Points imaginaires-Droite réelle

Olympiades mathématiques, énigmes et défis
hammana
Membre Relatif
Messages: 477
Enregistré le: 24 Avr 2012, 20:26

Points imaginaires-Droite réelle

par hammana » 05 Fév 2013, 18:31

Soient un cercle de centre de rayon , et un cercle de centre de rayon
La distance .
Construire la droite passant par les points d'intersection des deux cercles. Cette droite coupe en un point H, mesurer OH puis le calculer et vérifier la concordance des résultats.



hammana
Membre Relatif
Messages: 477
Enregistré le: 24 Avr 2012, 20:26

par hammana » 11 Fév 2013, 21:13

hammana a écrit:Soient un cercle de centre de rayon , et un cercle de centre de rayon
La distance .
Construire la droite passant par les points d'intersection des deux cercles. Cette droite coupe en un point H, mesurer OH puis le calculer et vérifier la concordance des résultats.


La question n'a pas l'air de susciter beaucoup d'intérêt. Voilà un petit coup de pouce:
Montrer que si les deux cercles se coupent en deux points réels M et N. La droite MN rencontre les tangentes communes aux deux cercles en leur milieu. C'est une propiété caractéristique de la droite qui reste valable quand on voit plus M et N.

Dlzlogic
Membre Transcendant
Messages: 5273
Enregistré le: 14 Avr 2009, 12:39

par Dlzlogic » 12 Fév 2013, 13:27

Bonjour,
Si j'ai bien lu les hypothèses, les cercles ne se coupent pas.
Mais il est possible que vous cherchiez une approche des faisceaux de cercle.
Je pense que les faisceaux de droite sont une notion largement oubliée, alors, les faisceaux de cercle :cry:

hammana
Membre Relatif
Messages: 477
Enregistré le: 24 Avr 2012, 20:26

par hammana » 12 Fév 2013, 13:53

Dlzlogic a écrit:Bonjour,
Si j'ai bien lu les hypothèses, les cercles ne se coupent pas.
Mais il est possible que vous cherchiez une approche des faisceaux de cercle.
Je pense que les faisceaux de droite sont une notion largement oubliée, alors, les faisceaux de cercle :cry:


Oui, on a dû laisser tomber une bonne partie de l'ancien pour faire place au nouveau.

 

Retourner vers ⚔ Défis et énigmes

Qui est en ligne

Utilisateurs parcourant ce forum : Aucun utilisateur enregistré et 24 invités

Tu pars déja ?



Fais toi aider gratuitement sur Maths-forum !

Créé un compte en 1 minute et pose ta question dans le forum ;-)
Inscription gratuite

Identification

Pas encore inscrit ?

Ou identifiez-vous :

Inscription gratuite