Combinatoire nouveau defi
Olympiades mathématiques, énigmes et défis
-
Mario2015
- Membre Relatif
- Messages: 306
- Enregistré le: 04 Jan 2015, 15:46
par Mario2015 » 28 Aoû 2015, 17:36
On a 252 quintuplets formes a partir de 10 numeros (1 a 10).
C(10,5)=252
On definit une relation "fraternite" entre 2 quintuplets de la maniere suivante : si 2 quintuplets ont 4 numeros en commun on les designe comme freres.
Exemple :
1-2-3-4-5 et 1-2-3-4-7 sont "freres".
Chaque quintuplet a exactement 25 "freres" (C(5,4)*5=25).
On cherche a placer les 252 quintuplets autour d`une table circulaire de telle sorte que chaque quintuplet soit aussi eloigne que possible de ses 2 freres (celui a sa droite et celui a sa gauche).
On definit un rayon uniforme r comme etant le nombre de places a gauche du quintuplet et a droite du quintuplet.
Exemple :
Un quintuplet assis quelque part sur un siege autour de la table n`a aucun frere assis dans un rayon r=4 veut dire que sur les 4 sieges a sa gauche et sur les 4 sieges a sa droite aucun de ses freres n`y est assis.
Quel est le rayon maximal que l`on peut se permettre si on vise a ce qu`un quintuplet pris au hasard soit aussi loin que possible de ses 2 freres (a gauche et a droite)?
On ne cherche qu`une seule solution abstraction faite des permutations.
-
zygomatique
- Habitué(e)
- Messages: 6928
- Enregistré le: 20 Mar 2014, 14:31
par zygomatique » 28 Aoû 2015, 19:18
salut
252 quintuplets
tout quintuplet a 25 frères
r < 252/26 ... est une borne largement supérieure à la valeur théorique ...
soient a et b les quintuplets (1, 2, 3, 4, 5) et (6, 7, 8, 9, 10) non frères
chacun d'eux a 25 frères qui ne seront jamais frère de l'autre
donc r < 252/52
je subodore même fortement qu'au moins deux frères sont cote à cote ....
Ce qui est affirmé sans preuve peut être nié sans preuve. EUCLIDE
-
Mario2015
- Membre Relatif
- Messages: 306
- Enregistré le: 04 Jan 2015, 15:46
par Mario2015 » 28 Aoû 2015, 19:32
Quelques precisions sur la notion de "fraternite" :
A=1-2-3-4-5
B=1-2-3-4-6
C=2-3-4-6-7
A a un frere B
B a un frere C
cela n`implique pas que A et C sont freres vu que A et C ont 3 numeros en commun.
Donc C peut s`asseoir a cote de A et vice versa
-
zygomatique
- Habitué(e)
- Messages: 6928
- Enregistré le: 20 Mar 2014, 14:31
par zygomatique » 28 Aoû 2015, 21:24
je l'avais compris ainsi ...
le frère d'un frère n'est pas forcément frère ...
Ce qui est affirmé sans preuve peut être nié sans preuve. EUCLIDE
-
Mario2015
- Membre Relatif
- Messages: 306
- Enregistré le: 04 Jan 2015, 15:46
par Mario2015 » 28 Aoû 2015, 21:50
Pas de probleme donc.
L`enonce semble clair.
De meme le rayon r = r places a gauche, r places a droite partant de la place assise du quintuplet concerne.
-
Mario2015
- Membre Relatif
- Messages: 306
- Enregistré le: 04 Jan 2015, 15:46
par Mario2015 » 28 Aoû 2015, 23:32
La par contre il y a un algo rapide pour trouver la solution.
-
Mario2015
- Membre Relatif
- Messages: 306
- Enregistré le: 04 Jan 2015, 15:46
par Mario2015 » 30 Aoû 2015, 23:04
Enfin, resolu!
Je posterai la solution tres prochainement sur le site.
-
Mario2015
- Membre Relatif
- Messages: 306
- Enregistré le: 04 Jan 2015, 15:46
par Mario2015 » 31 Aoû 2015, 18:09
Erreur dans ma solution.
Donc toujours rien! Meme si je comprends mieux comment solutionner ce probleme.
il y a une symetrie interessante a exploiter.
-
Mario2015
- Membre Relatif
- Messages: 306
- Enregistré le: 04 Jan 2015, 15:46
par Mario2015 » 09 Sep 2015, 03:22
En eclatant les 252 quintuplets en 2 sous-ensembles : 126+126, il suffirait de solutionner l`un de 2 pour que par symetrie on ait la solution globale.
J`attaque des demain.
Utilisateurs parcourant ce forum : Aucun utilisateur enregistré et 2 invités