2 résultats trouvés
Revenir à la recherche avancée
merci a tous :we: ! au fait je savais qu'il fallait montrer que n'importe quel ouvert (voisinage )de z pour la premiere distance est lui meme pour la deuxieme! mais comment!!! j'ai trouvé la reponse: comme on est dans Z donc on travaille avec les metriques et donc les boules, pour r<1 c'est donc evi...
- par sannou777
- 20 Nov 2006, 21:59
-
- Forum: ✯✎ Supérieur
- Sujet: distances topologiquement equivalentes!!
- Réponses: 4
- Vues: 911
voici mon exercice que j'arive pas a resoudre: alors , on munit Z de la distance usuelle sur R a savoir d(x,y)=|x-y|, montrez que d est topologiquement equivalente a d0 la distance discrete . la d0(x,y)=0 si x=y, et =1 si x<>y, le probleme que j'ai rencontré c'est que ,pour r<1, on peut definir les ...
- par sannou777
- 20 Nov 2006, 19:43
-
- Forum: ✯✎ Supérieur
- Sujet: distances topologiquement equivalentes!!
- Réponses: 4
- Vues: 911